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a b s t r a c t

We consider a call center model with a callback option, which allows to transform an
inbound call into an outbound one. A delayed call, with a long anticipated waiting time,
receives the option to be called back. We assume a probabilistic customer reaction to
the callback offer (option). The objective of the system manager is to characterize the
optimal call scheduling that minimizes the expected waiting and abandonment costs. For
the single-server case,we prove that non-idling is optimal. Using aMarkov decision process
approach, we prove for the two-server case that a threshold policy on the number of
queued outbound calls is optimal. For the multi-server case, we numerically characterize
a switching curve of the number of agents reserved for inbound calls. It is a function of
the number of queued outbound calls, the number of busy agents and the identity of jobs
in service. We also develop a Markov chain method to evaluate the system performance
measures under the optimal policy.

We next conduct a numerical study to examine the impact of the policy parameters
on the system performance. We observe that the value of the callback offer is especially
important for congested situations. It also appears that the benefits of a reservation policy
are more apparent in large call centers, while they almost disappear in the extreme
situations of light or heavy workloads. We moreover observe in most cases that the
callback offer should be given upon arrival to any delayed call. However, if balking and
abandonment are very high (whichhelps to reduce theworkload) or if the overall treatment
time spent to serve an outbound call is too large compared to that of an inbound one, there
is a value in delaying the proposition of the callback offer.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Context and motivation. Call centers serve as the public face in various areas and industries: insurance companies,
emergency centers, banks, information centers, help-desks, tele-marketing, just to name a few. The success of call centers is
due to the technological advances in information and communication systems. Themost used form of communication is the
telephone. However, in the context of highly congested call centers, the use of alternative service channels can be proposed
to customers so as to better match demand and capacity. Alternative channels could be email, chat, blog, or postponed
callback service. We focus on this last alternative. The idea is that customers, who are expected to experience long waiting
times, receive the option to be called back later. This leads to a contact center with two channels, one for inbound calls
(inbounds), and another for outbound calls (outbounds). The recent study of ICMI [1], based on the analysis of 361 large
contact centers, reports that 76% of them use the outbound channel.
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(a) Inbounds. (b) Outbounds.

Fig. 1. Effect of the callback option on performance (arrival rate = 5.5, service rate = 0.2, number of agents = 28).

The flexibility of the callback option comes from the willingness of some customers to accept future processing. The
call center can then make use of this opportunity to better manage arrival uncertainty, which in turn would improve the
system performance. An illustration of callback option benefits is provided in Fig. 1. The figure gives simulated performance
measures of a call center example with various levels for the use of the callback option. We consider a non-idling system
where inbounds have a non-preemptive higher priority over outbounds. We observe that the expected waiting times of
inbound and outbound calls are considerably improved by using the callback option. For instance, the expected waiting
time of inbounds could be divided by around 20 (it decreases from 8 min and 55 s to 23 s) while only 10% of arriving calls
choose to be called back.

The unpredicted and flexible call center environment offers the potential for a routing optimization that would lead to a
significant operational improvement. It is a non-expensive approach compared to staffing optimization [2,3]. One important
question formanagers in our context is how should be the routing rule of jobs thatwould ensure non-excessivewaiting times
for both job types, i.e., upon a service completion, should the agent handle an inbound or an outbound call? when should
be proposed the callback offer? We address these questions under a queueing modeling framework and a probabilistic
customer reaction to the callback option.

A call center where agents simultaneously handle inbound and outbound calls is commonly referred to as call blending.
The key distinction of call center problemswith blending comes from the fact that outbound tasks have less urgency relative
to inbound calls. Blended operations problemshave led to research onperformance evaluation [4–6], staffing [7] and analysis
of blending policies [8–13]. Because of the lack of service level requirement on outbounds, it is best to give higher priority
to inbounds. Moreover, to reduce the number of inbounds who may experience long waiting before service, one has to
guarantee that there is sufficient idleness in the system. In the patent of Dumas et al. [14], based on extensive simulation
experiments, it is shown that blending inbound and outbound calls and employing a threshold policy, ensure that the
outbound throughput rate ismetwhilewaiting times of inbounds are very short. It is also shown that blending the two types
of calls in one pool requires less agents than employing two distinct pools. Bhulai and Koole [9] and Gans and Zhou [2], prove
this optimal control, which is of threshold type, when the service rates of the two types of jobs are equal. More precisely,
they show that it is optimal to schedule outbound tasks only when no outbounds are in the queue and the number of idle
agents exceeds a certain threshold.

In the case of a callback option, this policy cannot be directly applied. The reason is that the above literature considers
an infinite amount of non-priority jobs. In a call center with a callback option, the number of customers waiting to be called
back has to be finite in order to avoid infinite waiting. The routing policy should then account for the length of the callback
queue. Another difference, compared to caseswith classical infinite amount of outbound tasks, is that inbound and outbound
arrivals are negatively correlated. This requires further analysis, and may lead to different managerial recommendations.
Contributions. We consider a call center with a single customer type. A delayed call, with a long anticipated waiting
time, receives the option to be called back. We develop a modeling that accounts for balking, abandonment, probabilistic
customer reaction to a state-dependent delay information, unequal service requirements for job types, and the eventual
non-availability of a called back customer. The objective of the systemmanager is to find the optimal call scheduling policy
that minimizes the expected operating costs of inbounds and outbounds. The control actions concern the number of agents
reserved for inbounds and the system state situations at which the callback offer should be proposed.

We distinguish three main contributions. The first contribution is related to the agent reservation policy. We prove for
the single-server case that non-idling is optimal. Using a Markov decision process (MDP) approach, we prove for the two-
server case with equal service requirements that a threshold policy on the number of queued outbounds is optimal. Based
on the two-server result, we conjecture for the multi-server case that the optimal policy is of switch type. The number of
agents to reserve for inbounds depends on the number of queued outbounds, the number of busy agents and the identity of
jobs in service. Moreover, we examine the impact of the system exogenous parameters on the agent reservation policy. We
observe, for example, that a reservation policy is not likely to be used under light or heavily loaded situations.
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The second contribution is the performance analysis under the optimal reservation policy. The performance measures of
interest are related to the job type waiting times and abandonments. We develop a controlled numerical approximation to
obtain these performance measures for the general modeling. For various particular cases, using a Markov chain method,
we go further by providing either exact numerical algorithms, or closed-form expressions for the performance analysis.

The third contribution is the analysis of the impact of the policy parameters on performance. We derive the first
and second monotonicity results in the number of agents for the performance measures in the non-idling case. These
results support that the benefit of a reservation policy is more apparent in large call centers. Moreover, in most cases, the
callback offer should be given upon arrival to any delayed call. We prove this result in the non-idling case using first order
monotonicity results. However, if balking and abandonment are very high (which helps to reduce the workload) or if the
overall treatment time spent to serve an outbound call is too large compared to that of an inbound one, there is a value in
delaying the callback offer to all customers.
Literature review. There is a rich literature on the operations management in call centers. We refer the reader to the two
surveys by Gans et al. [8] and Akşin et al. [3]. For a background on the specific context of multi-channel call centers, we refer
the reader to Chapter 7 in [15].

As mentioned above, there are only few papers dealing with routing strategies in the context of a finite amount of
callbacks. The first two papers directly addressing the problem of the callback option are by Armony and Maglaras [10,16].
The authors consider a model in which customers are given a choice of whether to wait online for their call to be answered
or to leave a number and be called backwithin a specified time or to immediately balk. Upon arrival, customers are informed
(or know from prior experience) of the expected waiting time if they choose to wait and the delay guarantee for the callback
option. Their decision is probabilistic and based on this information.

Under the heavy-traffic regime, Armony and Maglaras [10] develop an estimation scheme for the anticipated real-time
delay. They also propose an asymptotically optimal routing policy that minimizes real-time delay subject to a deadline on
the postponed service mode. In [16], the authors develop an asymptotically optimal routing rule, characterize the unique
equilibrium regime of the system, and propose a staffing rule that picks the minimum number of agents that satisfies a set
of operational constraints on the performance of the system. To the contrary to Armony and Maglaras [10,16], we account
here for the feature of abandonment, unequal service requirements and the possible non-availability of an outbound call.
Yet, our modeling is restricted to policies with strict non-preemptive priority for inbounds. Armony and Maglaras [10,16]
consider instead a state-dependent priority policy.

Two recent papers are by Kim et al. [17] and Dudin et al. [18]. Kim et al. [17] consider a call center model with a callback
optionwhere the queue capacity for inbounds is finite. As in ourmodeling, customer balking and abandonment are allowed.
The authors provide an efficient algorithm for calculating the stationary probabilities of the system states. Moreover, they
derive the Laplace–Stieltjes transform of the sojourn time distribution of virtual customers. Dudin et al. [18] consider a
slightly different modeling, where lost customers are called back. There are two agent teams, one that handles in priority
inbounds, and another one that handles in priority outbounds. They compute the stationary probabilities, and deduce the
system performance measures. They also numerically address the staffing issue for the two teams.

Our approach differs from those in [10,16–18] since we allow for agent reservation strategies. We also allow to control
the proposition of the callback offer, whereas in all above references this option is proposed to all customers. Other papers
considering finite amounts of outbound tasks are Armony andWard [11] and Gurvich et al. [19]. They study call centers that
exercise cross-selling. The cross-selling phase is initiated by the agent and can thus be considered as a type of outbound
work in finite number. However, these are less related to our specific context of callbacks.
Structure of the paper. The remainder of this paper is structured as follows. In Section 2, we describe the call center model
with a callback option. In Section 3, we address the optimal routing problem for outbound calls. In Section 4, we evaluate
the performance measures under the optimal reservation policy. In Section 5, we use the optimization and performance
measures results to examine the impact of the policy parameters onperformance.We thenprovide conclusions andhighlight
future research directions. Part of the proofs of the results of the main paper are given in the Appendices and the online
supplement (see Appendix H).

2. Model description

We consider a call center modeled as a multi-server queueing system with s identical, parallel servers (agents). The call
center handles two types of jobs: inbound calls (type 1 jobs or inbounds) initiated by customers, and outbound calls (type 2
jobs or outbounds) initiated by agents. Each agent can handle both types of jobs. Type 1 jobs request for a real-time service,
while type 2 jobs are customers with a postponed service. A job 2 customer is originally a job 1 customer that has chosen
to be called back. The real-time service is more important in the sense that the waiting time of an inbound call should be
in the order of seconds or minutes, whereas the postponed service could be delayed for several hours. This is the attractive
aspect for using the callback option. It allows to create a flexibility by delaying some of the workload for future processing,
which would improve the system performance.

The arrival process of inbounds is assumed to be a homogeneous Poisson process with rate λ. Inbound calls arrive at a
dedicated first come, first served (FCFS) queue with infinite capacity, denoted by queue 1. We assume that the service times
for inbounds are i.i.d. and exponentially distributed with rateµ1. Customers in queue 1 can be impatient. After entering the
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Fig. 2. The callback option model.

queue, a customer will wait a random length of time for service to begin. If service has not begun by this time, the customer
will abandon. Times before abandonment for inbounds are assumed to be i.i.d. and exponentially distributed with rate β .
Because of the flexibility of type 2 jobs, the system manager allocates more capacity to real-time service. Type 1 jobs have
therefore a strict non-preemptive priority over type 2 jobs, which means that if an agent is busy with a job 2, the agent will
finish first this job before turning to a newly arrived job 1. The non-preemption priority rule is coherent with the common
call center practice,where it is not appropriate to interrupt a conversationwith a lowpriority customer. In addition,we allow
for agent reservation policies for inbounds. In other words, we allow an agent to remain idle when queue 1 is empty and
queue 2 is not. This may reduce the waiting time of future inbound arrivals. For similar multi-channel call center situations,
agent reservation policies have been shown to be efficient [9,12].

If a customer accepts to be called back, she virtually joins a FCFS queue, denoted by queue 2. Due to the nature of the
outbound demand, we consider for this customer, the three possibilities as follows. With probability r1, she has exactly the
same need as the one she had when she first made her call. In this case, the service time is assumed to be exponentially
distributed with rate µ1 (similarly to an inbound customer). With probability r2 (r1 + r2 > 0), she has already resolved her
problem or a part of it. Hence, her service timemay be shorter. We assume in this case that the service time is exponentially
distributed with rate µ2 (µ2 ≥ µ1). Finally, with the remaining probability 1 − r1 − r2, the outbound customer is not
available, and an agent will try again to call her back later on. To handle such a situation, we assume that the agent spends
a random duration assumed to be exponentially distributed with rateµ3. This duration corresponds to the required time to
leave a message to the customer, and to place her back in the queue at the last position (she will be called back when she
will again reach the first position under the FCFS rule).
Description of the call back option. The state of the system at a given time t is defined by four variables: x, y, s2, s3, where
x is the number of inbounds in queue 1 or in service plus the number of outbounds in service with the same service time
requirement as inbounds (service rate µ1), y is the number of outbounds in queue 2, s2 is the number of agents busy with
outbounds that require a fast service (service rate µ2), and s3 is the number of agents handling non-available outbound
situations (rate µ3), for x, y ≥ 0 and 0 ≤ s2, s3 ≤ s.

Consider a newly arriving inbound call. If at least one agent is available, the customer immediately starts service. If all
agents are busy and the number of waiting calls in queue 1 is strictly lower than a given threshold, denoted by k ∈ N, a
delay information is announced to the customer. The delay information is based on the system state. We do not restrict
the model to a specific type of information: it could be the length of queue 1, the expected value or some quantiles of the
waiting time, etc. The new inbound customer then reacts to the delay information. She either balks (immediately leaves the
system) with probability αx,s2,s3 , or joins queue 1 with probability 1 − αx,s2,s3 where she may abandon or start service after
some time duration. We assume that the probability αx,s2,s3 increases in the announced delay, i.e., αx+1,s2,s3 ≥ αx,s2,s3 , for
s ≤ x+ s2 + s3 < s+ k, 0 ≤ s2, s3 ≤ s. Note that the probability αx,s2,s3 could be chosen constant for the case with no delay
information.

If the number of waiting calls in queue 1 is higher than or equal to k, the system provides a delay information as well as
a callback option. Exceeding the threshold k captures the fact that customers are likely to experience too long waiting times
in case they would request for a real-time service. The delay information is system state-dependent. Concretely, the new
inbound customer have the following three possibilities upon her arrival: she balks (immediately leaves the system) with
probability αx,s2,s3 , or she chooses the callback option and virtually joins queue 2 with probability qx,s2,s3 , or she joins queue
1 with probability 1− qx,s2,s3 −αx,s2,s3 , for x+ s2 + s3 ≥ s+ k, 0 ≤ s2, s3 ≤ s. Again, we assume that αx+1,s2,s3 ≥ αx,s2,s3 and
qx+1,s2,s3 ≥ qx,s2,s3 for x+ s2 + s3 ≥ s+ k and 0 ≤ s2, s3 ≤ s. Also, the quantities αx,s2,s3 and qx,s2,s3 could be chosen constant
for x + s2 + s3 ≥ s + k, 0 ≤ s2, s3 ≤ s. In such a case, we will then simply write them as α or q to simplify the presentation.
An illustration of the model is given in Fig. 2.
Problem formulation. Let us first define the performance measures of interest. We denote by W1, W2 and W the random
variables measuring the stationary waiting time of served inbounds in queue 1, the stationary waiting time of outbounds in
queue 2, and the unconditional stationary waiting time in the queue of an arbitrary job (inbound or outbound), respectively.
We also denote by Pa the stationary proportion of inbounds that leave the system without service either by abandoning
queue 1, or by balking upon arrival. The stationary proportion of inbounds that balk upon arrival is defined as Pb. We finally
denote by ψ the stationary probability that a new inbound call becomes an outbound one.
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Table 1
Model notations.

System state description
x Number of inbounds in queue 1 or in service plus number of outbounds (with the same service requirement as inbounds) in service
y Number of outbounds in queue 2
s2 Number of agents handling fast-served outbounds
s3 Number of agents handling non-available outbound situations

Exogenous parameters
λ Arrival rate of inbounds
s Number of agents
r1 Probability that an outbound call has the same service requirement as an inbound one
r2 Probability that an outbound call has a shorter service requirement than an inbound one
1 − r1 − r2 Probability that an outbound call in queue 2 is not available
µ1 Service rate of inbounds, and also a part of outbounds with the same service requirement
µ2 Service rate for fast-served outbounds
µ3 Service rate for handling non-available outbounds
β Abandonment rate for each inbound call in queue 1
αx,s2,s3 Probability that a new inbound call balks upon arrival
qx,s2,s3 Probability that an inbound call accepts the callback offer upon arrival

Control parameters
k Threshold on the length of queue 1, at which we start to propose the callback offer
c(x, y, s2, s3) Curve for the agent reservation policy

Performance measures
Ψ Proportion of inbounds that accept the callback offer
Pa Proportion of inbounds that leave the system without service (after a balking or an abandonment)
E(W1), E(W2),
E(W )

Expected waiting time for served inbounds in queue 1, expected waiting time for outbounds in queue 2, and unconditional waiting
time in the queue of an arbitrary job (inbound or outbound), respectively

We consider an economic framework based on the holding costs of jobs 1 and 2, and the cost of lost calls (because of
balking or abandonment). The objective of the systemmanager is to characterize the optimal routing policywhichminimizes
the expected system cost, denoted by SC , and given by

SC = γ1E(W1)+ γ2E(W2)+ γ3Pa,

where γ1, γ2 and γ3 are the cost parameters, and where E(Z) is the expected value of a given random variable Z . We assume
that γ1 > γ2 to give more importance to the waiting time of inbounds than that of outbounds. The control parameters for
the call center manager are the threshold k for queue 1 which characterizes the callback option, and the agent reservation
policy for inbounds.

For a given state (x, y, s2, s3) (0 ≤ x + s2 + s3 < s and y > 0), there are two possible actions: the first one is to serve an
outbound call and move to state (x+ 1, y− 1, s2, s3)with probability r1, or to state (x, y− 1, s2 + 1, s3)with probability r2,
or to state (x, y − 1, s2, s3 + 1)with probability 1 − r1 − r2; the second one is to keep the first outbound in line in queue 2
and stay at state (x, y, s2, s3). The knowledge of the optimal actions at each state defines a function denoted by c(x, y, s2, s3).
The curve of this function separates the states where the optimal action is to serve an outbound call from those where it
is optimal to keep an outbound call in queue 2. The function c(x, y, s2, s3) defines therefore the agent reservation policy. It
will be characterized in Section 3. A summary of the model notations is given in Table 1.

The call center model described above is referred to as Model G (general model). Because of its complexity, we define
submodels that correspond to various special cases, for which it is easier to observe and prove insights. We denote byModel
A the submodel where outbounds have the same service rate as inbounds and these are available when they are called back
(r1 = 1 and r2 = 0), by Model B a submodel of Model A where inbounds are infinitely patient (β = 0), by Model C a
particular case of Model B where the balking and callback parameters are assumed to be constant (for example when no
information is given to arriving customers).We also defineModel NI (non-idlingmodel) a submodel ofModel Gwhere idling
is not allowed (i.e., the first outbound call in queue 2 starts service as soon as an agent becomes available and queue 1 is
empty). An illustration of the submodels is depicted in Fig. 3.
Markov decision process approach. For Model G, we formulate the routing problem as a Markov decision process (MDP).
Since we are considering long-term average performance, it is optimal to schedule jobs at arrival, service completion or
abandonment times. If it is optimal to keep a server idle at a given time, then the action remains optimal until the next
event in the system. This result follows directly from the continuous-time Bellman equation [20, Chapter 11]. Therefore, it
suffices to consider the system only at arrival, service completion or abandonment times. Due to the call abandonment in
queue 1, the total event rate is not bounded. We therefore use the traditional approach where we assume that queue 1 has
a limited capacity N (N ≥ 0). The parameter N is chosen high enough to approximate the real system. The total event rate
is then uniformly bounded by λ + smax(µ1, µ2, µ3) + Nβ , and without loss of generality, we assume that it is equal to
one. We next use the well known uniformization technique [20, Chapter 8], which allows to apply discrete-time dynamic
programming to characterize the optimal routing policy.

The possible actions for an agent just after a service completion (and queue 1 is empty) are either to remain idle, or
to serve an outbound call if queue 2 is not empty. We choose to formulate a 2-step value function, in order to separate
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Fig. 3. The submodels.

transitions and actions and simplify the involved expressions. We define the sequences Un(x, y, s2, s3) and Vn(x, y, s2, s3)
over n steps, for n, x, y ≥ 0 and 0 ≤ s2, s3 ≤ s. For n ≥ 0, we have

Un+1(x, y, s2, s3) = γ1(x + s2 + s3 − s)+ + γ2y + λ

1(0≤x+s2+s3<s)Vn(x + 1, y, s2, s3)

+ 1(s≤x+s2+s3<s+k)

(1 − αx,s2,s3)Vn(x + 1, y, s2, s3)+ αx,s2,s3(Vn(x, y, s2, s3)+ γ3)


+ 1(s+k≤x+s2+s3<s+N)(qx,s2,s3Vn(x, y + 1, s2, s3)+ αx,s2,s3(Vn(x, y, s2, s3)+ γ3)

+ (1 − qx,s2,s3 − αx,s2,s3)Vn(x + 1, y, s2, s3))

+ 1(x+s2+s3=s+N)(qN−1,s2,s3Vn(x, y + 1, s2, s3)+ (1 − qN−1,s2,s3)(Vn(x, y, s2, s3)+ γ3))


+ β(x + s2 + s3 − s)+(Vn(x − 1, y, s2, s3)+ γ3)+ min(s − s2 − s3, x)µ1Vn(x − 1, y, s2, s3)

+ s2µ2Vn(x, y, s2 − 1, s3)+ s3µ3Vn(x, y + 1, s2, s3 − 1)

+

1 − λ− β(x + s2 + s3 − s)+ − min(s − s2 − s3, x)µ1 − s2µ2 − s3µ3


Vn(x, y, s2, s3),

for x, y ≥ 0, and 0 ≤ s2, s3 ≤ s, (1)

where 1(x∈A) is the indicator function of a subset A, and

Vn+1(x, y, s2, s3) = min(r1Un+1(x + 1, y − 1, s2, s3)+ r2Un+1(x, y − 1, s2 + 1, s3)
+ (1 − r1 − r2)Un+1(x, y − 1, s2, s3 + 1),Un+1(x, y, s2, s3)),

for y > 0 and 0 ≤ x + s2 + s3 < s and Vn+1(x, y, s2, s3) = Un+1(x, y, s2, s3) in the remaining cases. We choose
V0(x, y, s2, s3) = U0(x, y, s2, s3) = 0, for x, y ≥ 0, and 0 ≤ s2 + s3 ≤ s. The transitions at boundary states x+ s2 + s3 = N are
chosen such that themonotonicity properties of the value functions aremaintained. The value of this choice is proven in the
proof of Theorem 1 in Section 3.2. Another possibility to maintain the monotonicity properties is to use the smoothed rate
truncation as proposed by Bhulai et al. [21], however, this would imply a more complicate expression of the value functions
in our setting.

The long-term average optimal actions can be obtained through value iteration, by recursively evaluating Vn using
Eq. (1), for n ≥ 0. As n tends to infinity, the minimizing actions converge to the optimal ones [20]. For 0 ≤ x + s2 + s3 < s
and y > 0, the minimizing action is chosen between keeping an outbound call in queue 2 or starting the service of this call.
For x + s2 + s3 ≥ s, we do not consider any control action because of the priority for inbounds (i.e., no possibility of having
an idle agent while a call is waiting in queue 1).

3. Optimal agent reservation policy

We consider the single, the two-server and the multi-server cases. For the multi-server case of Model G, we first prove
a preliminary result stating that when all agents are idling and queue 2 is not empty, then it is optimal to serve at least
the first outbound call in line. A corollary of this result is that non-idling is optimal in the single-server case. In the two-
server case, we prove in Theorem 1 the optimal reservation policy for Model A. It is a threshold policy on the number of
waiting outbounds in queue 2. For the multi-server cases of Models A and G, we conjecture that the optimal routing follows
a state-dependent threshold policy, i.e., a switching curve. For Model A, the switching curve is only based on the number of
outbounds in queue 2 and the number of busy agents. In addition to that, for Model G, the optimal policy depends on the
number of each job type in service.

The result for the multi-server case is intuitive and a standard extension, in MDP problems, of the proved result in
the single and two-server cases. It is however very hard to obtain a proof because of the growing dimensionality of the
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underlying state space and the problem set down by the departure term. This proof is related to a well known fundamental
queueing control problem, for which no rigorous proof does exist yet. We believe that our proof for the two-server case
should give some indications that would motivate future research. This open question consists in showing the propagation
of a monotonicity relation through the minimizing operator. In Remark 1 inside the proof of Theorem 1 in Appendix A, we
provide themathematical details of what should be proven to rigorously obtain themulti-server result. It reduces to that for
the well known routing problem in the heterogeneous multi-server queue, where the objective is to find a non-preemptive
routing policy that minimizes the long run average time in the system [22–24]. For a background on this question, we refer
the reader to Koole [25].

3.1. Preliminary result

Proposition 1 provides a preliminary result for Model G.

Proposition 1. In the multi-server case of Model G, if all agents are idling and queue 2 is not empty, then it is optimal to serve at
least an outbound call.

Proof. For γ2 > 0, it is clear that an outbound call in queue 2 has to be served at one point. Otherwise, queue 2would contain
an infinite number of outbounds due to the FCFS rule. Therefore, a policy which would not serve an outbound call cannot
be optimal. We next prove that the best situation for the service of an outbound call is when all agents are idling. Serving
an outbound call always improves the performance of outbounds whether this outbound call is served when all agents are
idling or in another situation. An outbound taken in service would deteriorate the performance of inbounds if new inbounds
arrive at a busy system while this outbound call is still in service. The lowest value of the probability of such an event is
reached in the case this outbound call has been taken in service when all agents are idling. Moreover, an outbound call
service duration does not depend on the system state. Thus, serving an outbound call when all agents are idling improves
the performance of outbounds and has the smallest probability to deteriorate the performance measures of inbounds. Since
all outbounds has to be served at one point, an optimal state-dependent policy forces the service of outbounds, if any, when
all agents are idle. �

We next deduce the optimal agent reservation policy for the single-server case of Model G.

Corollary 1. In the single-server case of Model G, the optimal agent reservation policy is the non-idling policy.

The proof of Corollary 1 directly follows from Proposition 1. In Section 1 of the online supplement (see Appendix H), we
propose another proof of this corollary for Model A using an MDP approach.

3.2. Two-server result for Model A

In the two-server case, using Proposition 1, we never encounter situations for the optimal policy where the two agents
are idling and at least one outbound call is in queue 2. When one server is busy, we prove in Theorem 1 that the optimal
policy in Model A is of threshold type for the reservation of the other server.

Theorem 1. In the two-server case for Model A, when one agent is busy, there exists a threshold on the number of outbounds in
queue 2, at and beyond which it is optimal to serve the first waiting outbound in line, and it is optimal to not serve outbounds in
the remaining cases.

The proof is given in Appendix A. It is based on the propagation of monotonicity results of the value function as defined
in Section 2. This type of proofs is standard in MDP problems [25]. Yet, our result cannot directly follow from [25] for the
following reasons. The existing results concern mostly the single-server-one-dimensional case. Less is doable in the multi-
dimensional case for the propagation of the results through the minimizing operator. Moreover, abandonment from queue
1 is allowed here, a feature that often breaks the monotonicity properties when space truncation is required. We show in
our proof that themonotonicity properties are maintained. Finally, the complexity of the proof comes from the arrival term,
which is specific in our model and requires a special consideration, because the two queues are involved and the customer
reaction is state-dependent.

3.3. Multi-server conjecture

Let us now comeback to the multi-server case. Using the value functions defined in Section 2, we conjecture that the
optimal policy is of switch type. For bothModels A andG,we conduct a numerical study fromwhichwededuce the switching
curves which separate states where it is optimal to serve an outbound call from those where it is not. We also examine the
impact of the system parameters on the reservation policy.
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3.3.1. Switching curves for Model A
ForModel A,we do not need to distinguish between inbounds and outbounds in service. Let us rewrite the value functions

for Model A (µ1 = µ2 = µ, r1 = 1). We have for n ≥ 0,

Un+1(x, y) = γ1(x − s)+ + γ2y + λ

1(0≤x<s)Vn(x + 1, y)

+ 1(s≤x<s+k) ((1 − αx)Vn(x + 1, y)+ αx(Vn(x, y)+ γ3))

+ 1(s+k≤x<s+N)(qxVn(x, y + 1)+ αx(Vn(x, y)+ γ3)+ (1 − qx − αx)Vn(x + 1, y))

+ 1(x=s+N)(qN−1Vn(x, y + 1)+ (1 − qN−1)(Vn(x, y)+ γ3))


+ β(x − s)+(Vn(x − 1, y)+ γ3)+ min(s, x)µVn(x − 1, y)

+

1 − λ− β(x − s)+ − min(s, x)µ1


Vn(x, y), for x, y ≥ 0,

with

Vn+1(x, y) = min(Un+1(x + 1, y − 1),Un+1(x, y)),

for y > 0 and 0 ≤ x < s and Vn+1(x, y) = Un+1(x, y) in the remaining cases.We choose V0(x, y) = U0(x, y) = 0, for x, y ≥ 0.
We conjecture that the optimal policy is a function of x (number of calls in service plus number of inbounds in queue 1)

and y (number of outbounds in queue 2). Fig. 4 gives various optimal switching curves to illustrate the impact of the system
parameters on the optimal policy. The abscissa axis in each figure represents the overall number of jobs in the system
(number of outbounds in queue 2 plus number of calls in service) and the ordinate axis represents the number of calls in
service. We only consider states where 0 ≤ x < s. For the remaining states, the only possible action is to keep outbounds
in the queue. The optimal actions can be read from the figures. Consider a given point (x + y, x) (0 ≤ x < s and y > 0).
If this point is strictly under the curve, then it is optimal to serve an outbound call and therefore move from (x + y, x) to
(x + 1 + y − 1, x + 1) = (x + y, x + 1). If this new point is strictly under the curve then the optimal action is to serve
another outbound call. We continue to take the decision to serve by moving on a vertical line until we reach the curve. On
the switching curve or above, the optimal action is to keep outbounds in the queue. The value to choose x + y in abscissa
instead of y is to observe the evolution from a non-optimal point to the optimal one on a vertical line instead of a diagonal
one. The curves in dashed lines represent the non-idling policy.

We observe that when x = 0 and y > 0, the optimal action is always to serve an outbound call (this holds from
Proposition 1). Given that the switching curve is increasing in x + y, it is an increasing step function. It is given by

c(x + y) = min(y0, x + y)+ 1(x+y≥y1) + 1(x+y≥y2) + · · · + 1(x+y≥ys−y0 )
, (2)

where 1 ≤ y0 < y1 < y2 < · · · < ys−y0 . The parameters y0, . . . , ys−y0 are the levels that represent the changing points of
the switching curve. Using Proposition 1, we have y0 ≠ 0. Eq. (2) can be interpreted as follows. Assume we have x + y jobs
in the system (x busy agents and y outbounds in queue 2). If x+ y < y1, then it is optimal to have at most y0 tasks in service,
i.e., if x < y0 we move from state (x, y) to state (min(y0, x + y), y − (min(y0, x + y) − x)), and if x ≥ y0 we stay in state
(x, y). If y1 ≤ x + y < y2, then at most y0 + 1 jobs should be in service, i.e., if x < y0 + 1 we move from state (x, y) to state
(min(y0 +1, x+y), y− (min(y0 +1, x+y)−x)), and if x ≥ y0 +1we stay in state (x, y), and so on. Finally, if y ≥ ys−y0 , then
at most y0 + s − y0 = s jobs should be in service. In other words, when x + y ≥ ys−y0 , no agents are reserved for inbounds
and it is optimal to move from state (x, y) to state (min(s, x + y), y − (min(s, x + y) − x)). A qualitative interpretation of
Eq. (2) is that the more numerous queued outbounds and the less busy are the agents, the more likely the optimal decision
would be to serve an outbound call.

This switch type policy in the multi-server case is a standard extension of the threshold policy in the two-server case.
The new element in the multi-server case is that the decision to serve an outbound call should no longer only depend on
the length of queue 2, since more than one agent might be involved. For a given situation with x busy agents and s − x idle
agents, the optimal policy is a threshold policy on the length of queue 2. This leads, as a consequence, to a switch type policy.

We next examine the impact of the parameters on the reservation policy. In Proposition 2, we prove that the more
importance is given to inbounds and the less customers are likely to accept the callback offer, the higher should be the
reservation for inbounds.

Proposition 2. Consider two situations with identical arrival and departure parameters (λ, αx for x ≥ s, β , s and µ). The first
situation has the cost parameters γ1, γ2 and γ3 and the second one has γ ′

1, γ
′

2 and γ ′

3. The callback parameters are constant for
both situations. They are q and q + q′ for the first and second situations, respectively.

If γ1 ≥ γ ′

1, γ2 ≤ γ ′

2, γ3 ≥ γ ′

3, q
′
≥ 0, then the first situation requires more reservation than the second one. In other words,

the switching curve is lower for the first situation.

The proof of this proposition is given in Appendix B. The impact of the cost parameter γ2 is illustrated in Fig. 4(a), i.e., the
switching curve increases (the reservation decreases) in γ2. The opposite is true when γ1 or γ3 increases. Fig. 4(b) illustrates
the impact of a constant callback parameter (qx = q for x ≥ s + k). It shows that the more customers are likely to accept
the callback option, the higher is the switching curve (less reservation for inbounds). The same observation holds when qx
is not constant (Fig. 4(c)). The key factor, whether the callback parameter is constant or not, is the proportion of outbounds.
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(a) Impact of γ2 (λ = 4, q = 40%, α = β = 0). (b) Impact of q (γ2 = 0.05, λ = 4, α = β = 0).

(c) Impact of qs+k+x (λ = 4, γ2 = 0.05, α = β = 0, x ≥ 0). (d) Impact of λ (γ2 = 0.05, q = 40%, α = β = 0).

(e) Impact of α (λ = 4, γ2 = 0.05, q = 40%, β = 0.1). (f) Impact of αs+x (λ = 4, γ2 = 0.05, q = 40%, β = 0, x ≥ 0).

Fig. 4. Optimal switching curve (µ1 = 0.2, r1 = 1, s = 28, γ1 = 1, k = 5, γ3 = 0.5).

A less intuitive observation is that the switching curve is not monotone in the workload, defined as λ/µ (Fig. 4(d)). We
observe that reservation does not happen in the extreme situations of light or heavyworkloads. For lightworkload situations,
the system capacity is high enough, such that both call types experience small waiting times. Then, the reservation for
inbound calls does not need to be substantial. For high workload situations, queue 1 is often long. Thus, a high proportion
of customers would choose the callback option and join queue 2. Given that queue 2 is also long, the system should not
further deteriorate the waiting of outbounds by reserving agents for jobs 1. However, for an intermediate situation, with a
moderate workload, jobs 2 are less numerous, and do not therefore need to have access to all agents. The system may then
consider agent reservation for jobs 1.

Fig. 4(e) reveals that the impact of the balking parameters αx and the abandonment parameter β are not similar to that
of the workload. For high values of αx or β , the system capacity is high enough to achieve small waiting times. However, the
proportion of abandonment is high, so, the reservation for inbounds needs to be important to avoid toomuch abandonment.
For low values of αx or β , the reservation policy mainly depends on the workload λ/µ (see Fig. 4(e) and (f)).

3.3.2. Switching curves for Model G
We now consider Model G. Figs. 5 and 6 illustrate the switching curves for the optimal policy in Model G. Again, the

curves in dashed lines represent the non-idling policy.
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Fig. 5. Optimal switching curves (λ = 3.8, q = 40%, α = β = 0, γ1 = 1, γ2 = 0.05, k = 5, µ1 = 0.2, µ2 = 1, µ3 = 10, r1 = r2 = 1/3, s = 28).

As expected, we observe that the optimal decisions are not only based on the number of outbounds in queue 2 and the
number of busy agents as for Model A, but also the identity of the jobs in service. We distinguish three different zones
delimited by two switching curves. A first switching curve is defined for the case where all busy agents are busy with rate
µ1 (s2 = s3 = 0). This situation is the worst for the occupancy of the agents, because µ3 ≥ µ2 ≥ µ1. Thus, under this
first switching curve, for any state with less busy agents or more outbounds in queue 2, the optimal decision is to serve an
outbound call (if any), i.e., wemove from state (x+y+ s2 + s3, x+ s2 + s3) to state (x+1+y−1+ s2 + s3, x+1+ s2 + s3) =

(x + y + s2 + s3, x + 1 + s2 + s3). A second switching curve is defined for the cases were all busy agents are busy with rate
µ3 (x = s2 = 0). This situation is the best for the occupancy of the agents. On and above this second switching curve, for
any state with more busy agents and less outbounds in queue 2, the optimal decision is to keep all outbounds in queue 2.

The ordering µ3 ≥ µ2 ≥ µ1 justifies that the first switching curve is below the second one. Even in the case µ3 = µ2,
the second switching curve (x = s2 = 0) is still higher than a switching curve where all busy agents are busy with rate µ2
(x = s3 = 0). The reason is the high need of serving outbounds when all agents are busy with rate µ3. If the agents are all
handling a non-available outbound situation, they would not reduce the number of outbounds in the system, so, the need
for serving outbounds does not reduce.

Yet, for situations with small number of customers in the system or high number of customers in queue 2, the two
extreme switching curves (corresponding to s2 = s3 = 0 and x = s2 = 0) coincide. Therefore, there only exists a finite
number of states where the optimal decisions depend on the identity of the jobs in service. Fig. 6(a) reveals that the two
extreme switching curves get closer to one another as r1,µ2, orµ3 increases. The reason is the similarity between the service
requirements of inbounds and outbounds. Fig. 6(b) reveals that as r1 + r2 decreases, the two extreme switching curves get
higher, i.e., less agent reservation. The reason is related to the difficulty of serving an outbound call. When agents are often
handling non-available outbound situation, it is difficult to reduce the length of queue 2, therefore, outbounds should benefit
from more availability of the agents.

Similarly to Model A, since the switching curve is increasing in x+y+ s2 + s3, it is an increasing step function. Given that
agents handle 3 different types of jobs, we define the 3 variables increasing function b(x, s2, s3)which gives the ‘‘busyness’’
of the agents team. Because the number of agents is finite, we assume without loss of generality that 0 ≤ b(x, s2, s3) ≤ 1.
This busyness function corrects the switching curve, defined for Model A, into

c(x + y + s2 + s3) = min(y0, x + y + s2 + s3)1(b(x,s2,s3)≤b0) + 1(x+y+s2+s3≥y1)1(b(x,s2,s3)≤b1)

+ 1(x+y+s2+s3≥y2)1(b(x,s2,s3)≤b2) + · · · + 1(x+y+s2+s3≥ys−y0−1)1(b(x,s2,s3)≤bs−y0−1) + 1(x+y+s2+s3≥ys−y0 )
,

where 1 ≤ y0 < y1 < y2 < · · · < ys−y0 and 0 < b0 ≤ b1 ≤ · · · ≤ bs−y0−1 ≤ 1. The parameters yi, 0 ≤ i ≤ s − y0, have the
same signification as those for Model A. The parameters bi, 0 ≤ i ≤ s − y0, are the levels of change of the busyness of the
agents team. The values of the bis can be determined using value iteration.

From the numerical experiments, we observe that the values of the bis are different than one only for small values of i.
This implies that the busyness of the agents team affects the optimal decisions only when the number of busy agents is low.
The reason is related to the blocking risk for an inbound call. When most of the agents are idling, the decision to serve an
outbound call would most likely not block the agents team. In such a situation, what affects the decision is then the identity
of jobs in service. In the opposite case, whenmost of the agents are busy, the service of an outbound call could easily lead to
a blocking situation (waiting time for inbound calls). In such a situation, what affects the decision is then the total number
of busy agents (x + s2 + s3) and the length of queue 2 (y), more than the identity of the jobs in service.

4. Performance analysis

We compute the stationary performance measures. In Section 4.1, we profit from the constant transition rates and
propose an exact algorithm for Model C. In Section 4.2, we provide a controlled approximation based on value iterations
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(a) Example with r1 = 80%, r2 = 5%, µ1 = 0.2, µ2 = 0.5 and
µ3 = 10.

(b) Example with r1 = 10%, r2 = 10%, µ1 = 0.2, µ2 = 1 and µ3 = 10.

Fig. 6. Optimal switching curve (λ = 3.8, q = 40%, α = β = 0, γ1 = 1, γ2 = 0.05, k = 5, s = 28).

Fig. 7. Markov chain for Model C (q′
= q + α).

for Models A and G. In Section 4.3, we consider special cases of agent reservation for Model C (Section 4.3.1) and the non-
idling case for Model A (Section 4.3.2). This allows to obtain closed-form expressions for the bounds of the performance
measures of Models A and C.

4.1. Model C

We compute here E(W1), E(W2), Pb and Ψ . Our approach is based on the analysis of the underlying Markov chain. We
compute the stationary probabilities of the system states by solving a system of linear difference equations. We do so by
solving the involved homogeneous equations defined on the set of complex numbers. Although some quantities contain
infinite summations, we provide a method that allows to do the exact computation within a finite number of calculations.

Consider the stochastic process {(x(t), y(t)), t ≥ 0}, where x(t) denotes the number of calls in queue 1 (jobs 1) or in
service (jobs 1 or 2); and y(t) denotes that in queue 2 (jobs 2) at a given time t ≥ 0. We have x(t), y(t) ∈ {0, 1, 2, . . .}, for
t ≥ 0. As inter-arrival and service times are exponentially distributed, {(x(t), y(t)), t ≥ 0} is a Markov chain. An illustration
of this Markov chain in given in Fig. 7.

We denote by px,y the stationary probability to be in state (x, y), for x, y ∈ N. In what follows, we compute the stationary
probabilities, from which we thereafter deduce the system performance measures of interest. To simplify the presentation
of the analysis, we divide it into the following 7 steps:
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• Step 1.We provide the set of equilibrium equations relating the stationary probabilities.
• Step 2. We simplify the expressions of px,y, for x ≤ s + k and y ≥ 0, by expressing them as a function of only two state

probabilities from the row y in the Markov chain.
• Step 3.We show how px,y, for x ≥ s + k and y ≥ 0, can be computed as a function of ps+k,0, ps+k,1, . . . , ps+k,y.
• Step 4.We evaluate all stationary probabilities for x ≥ 0 and y = 0 as a function of p0,0.
• Step 5. For y ≥ 0, we develop a recurrence method to compute all stationary probabilities of row y + 1 in the Markov

chain as a function of the previous rows. Thus all stationary probabilities can be derived as a function of p0,0.
• Step 6. Although p0,0 involves an infinite summation, we provide a method to compute it within a finite number of

calculations.
• Step 7.We finally derive the system performance measures as a function of the stationary probabilities.

The details for each step are given in Appendix C.

4.2. Models A and G

We compute here E(W1), E(W2), Pa, and Ψ . We propose a numerical method based on the iterative computation of the
dynamic programming operators.

For Model A, assuming the switch policy as defined in Section 3.3.1, the value functions can be rewritten, for n ≥ 0, as

Vn+1(x, y) = γ1(x − s)+ + γ2y + λ

1(0≤x<s)Vn(x + 1, y)

+ 1(s≤x<s+k) ((1 − αx)Vn(x + 1, y)+ αx(Vn(x, y)+ γ3))

+ 1(s+k≤x<s+N)(qx(Vn(x, y + 1)+ γ4)+ αx(Vn(x, y)+ γ3)+ (1 − qx − αx)Vn(x + 1, y))

+ 1(x=s+N)(qN−1(Vn(x, y + 1)+ γ4)+ (1 − qN−1)(Vn(x, y)+ γ3))

+ β(x − s)+(Vn(x − 1, y)+ γ3)

+ min(s, x)µ

1(y>0)(1(x+y≤y1,x≤y0) + 1(y1<x+y≤y2,x≤y0+1) + 1(y2<x+y≤y3,x≤y0+2) + · · ·

+ 1(ys−y0<x+y,x≤s))Vn(x, y − 1)+


1 − 1(y>0)(1(x+y≤y1,x≤y0) + 1(y1<x+y≤y2,x≤y0+1)

+ 1(y2<x+y≤y3,x≤y0+2) + · · · + 1(ys−y0<x+y,x≤s))

Vn(x − 1, y)


+

1 − λ− β(x − s)+ − min(s, x)µ1


Vn(x, y), for x, y ≥ 0,

with V0(x, y) = 0, for x, y ≥ 0.
For Model G, assuming the switch policy as defined in Section 3.3.2, the value functions can be rewritten, for n ≥ 0, as

Un+1(x, y, s2, s3) = γ1(x + s2 + s3 − s)+ + γ2y + λ

1(0≤x+s2+s3<s)Vn(x + 1, y, s2, s3)

+ 1(s≤x+s2+s3<s+k)

(1 − αx,s2,s3)Vn(x + 1, y, s2, s3)+ αx,s2,s3(Vn(x, y, s2, s3)+ γ3)


+ 1(s+k≤x+s2+s3<s+N)(qx,s2,s3(Vn(x, y + 1, s2, s3)+ γ4)+ αx,s2,s3(Vn(x, y, s2, s3)+ γ3)

+ (1 − qx,s2,s3 − αx,s2,s3)Vn(x + 1, y, s2, s3))
+ 1(x+s2+s3=s+N)(qN−1,s2,s3(Vn(x, y + 1, s2, s3)+ γ4)+ (1 − qN−1,s2,s3)(Vn(x, y, s2, s3)+ γ3))


+ β(x + s2 + s3 − s)+(Vn(x − 1, y, s2, s3)+ γ3)

+ min(s − s2 − s3, x)µ1

1(y>0)(1(x+y+s2+s3≤y1,x+s2+s3≤y0,b(x−1,s2,s3)≤b0)

+ 1(y1<x+y+s2+s3≤y2,x+s2+s3≤y0+1,b(x−1,s2,s3)≤b1)

+ · · · + 1(ys−y0<x+y+s2+s3,x+s2+s3≤s))(r1Vn(x, y − 1, s2, s3)+ r2Vn(x − 1, y − 1, s2 + 1, s3)

+ (1 − r1 − r2)Vn(x − 1, y − 1, s2, s3 + 1))

+

1 − 1(y>0)(1(x+y+s2+s3≤y1,x+s2+s3≤y0,b(x−1,s2,s3)≤b0) + 1(y1<x+y+s2+s3≤y2,x+s2+s3≤y0+1,b(x−1,s2,s3)≤b1)

+ · · · + 1(ys−y0<x+y+s2+s3,x+s2+s3≤s))

Vn(x − 1, y, s2, s3)


+ s2µ2


1(y>0)(1(x+y+s2+s3≤y1,x+s2+s3≤y0,b(x,s2−1,s3)≤b0) + 1(y1<x+y+s2+s3≤y2,x+s2+s3≤y0+1,b(x,s2−1,s3)≤b1)

+ · · · + 1(ys−y0<x+y+s2+s3,x+s2+s3≤s))(r1Vn(x + 1, y − 1, s2 − 1, s3)+ r2Vn(x, y − 1, s2, s3)

+ (1 − r1 − r2)Vn(x, y − 1, s2 − 1, s3 + 1))

+

1 − 1(y>0)(1(x+y+s2+s3≤y1,x+s2+s3≤y0,b(x,s2−1,s3)≤b0) + 1(y1<x+y+s2+s3≤y2,x+s2+s3≤y0+1,b(x,s2−1,s3)≤b1)

+ · · · + 1(ys−y0<x+y+s2+s3,x+s2+s3≤s))

Vn(x, y, s2 − 1, s3)


+ s3µ3


1(y>0)(1(x+y+s2+s3≤y1,x+s2+s3≤y0,b(x,s2,s3−1)≤b0) + 1(y1<x+y+s2+s3≤y2,x+s2+s3≤y0+1,b(x,s2,s3−1)≤b1)

+ · · · + 1(ys−y0<x+y+s2+s3,x+s2+s3≤s))(r1Vn(x + 1, y − 1, s2, s3 − 1)+ r2Vn(x, y − 1, s2 + 1, s3 − 1)

+ (1 − r1 − r2)Vn(x, y − 1, s2, s3))
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+

1 − 1(y>0)(1(x+y+s2+s3≤y1,x+s2+s3≤y0,b(x,s2,s3−1)≤b0) + 1(y1<x+y+s2+s3≤y2,x+s2+s3≤y0+1,b(x,s2,s3−1)≤b1)

+ · · · + 1(ys−y0<x+y+s2+s3,x+s2+s3≤s))

Vn(x, y, s2, s3 − 1)


+

1 − λ− β(x + s2 + s3 − s)+ − min(s − s2 − s3, x)µ1 − s2µ2 − s3µ3


Vn(x, y, s2, s3),

for x, y ≥ 0, and 0 ≤ s2, s3 ≤ s,

with V0(x, y, s2, s3) = 0, for x, y ≥ 0 and 0 ≤ s2, s3 ≤ s.
In both cases (Models A and G), the standard way of obtaining the long-term performance measures is through value

iteration, by recursively evaluating Vn, for n ≥ 0. As n tends to infinity, the difference Vn+1(x, y, s2, s3) − Vn(x, y, s2, s3)
converges to the desired metric. Thus, we stop the iteration until the following criterion is met

max
x,y,s2,s3

{Vn+1(x, y, s2, s3)− Vn(x, y, s2, s3)} − min
x,y,s2,s3

{Vn+1(x, y, s2, s3)− Vn(x, y, s2, s3)} < ϵ,

for some given small ϵ.
In what follows we precise the parameters in the value functions which allow to compute the desired performance

measures. One can calculate the expected number of customers in queue 1, say E(N1), by letting γ1 = 1, γ2 = 0, γ3 =

0, γ4 = 0 in the value function; the expected number of customers in queue 2, say E(N2), by letting γ1 = 0, γ2 = 1, γ3 =

0, γ4 = 0; the proportion of customers who abandon the system, Pa, by letting γ1 = 0, γ2 = 0, γ3 = 1/λ, γ4 = 0; the
proportion of customers who choose the callback offer,Ψ , by letting γ1 = 0, γ2 = 0, γ3 = 0, γ4 = 1/λ. Using next the Little
law, we obtain the expected waiting time for served customers in queue 1, E(W1) =

E(N1)
λ(1−Pa−Ψ )

; and the expected waiting

time in queue 2, E(W2) =
E(N2)
λΨ

.

4.3. Special cases

We consider here some special cases of agent reservation for Model C and the non-idling case for Model A.

4.3.1. Special reservation cases for Model C
We define for Model C the threshold y0 on the number of busy agents. If the number of busy agents is lower than or equal

to y0 (1 ≤ y0 ≤ s) and at least one outbound call is in queue 2, then we serve this outbound call. In the remaining cases, we
do not serve outbounds. Therefore, the switching curve of this policy is c(x + y) = min(x + y, y0).

Since the optimal action is to serve an outbound call when all agents are idling (Proposition 1), the worst policy for
outbounds (the best case for inbounds) consists of serving an outbound call only when all agents are idling. We refer to the
latter as the highest reservation policy. It corresponds to the case y0 = 1. As for the non-idling policy, it corresponds to the
case y0 = s.

The analysis of this policy is a deduced from that of Section 4.1. In Corollary 2, we give closed-form expressions for E(W1),
Pb and Ψ as a function of y0. The proof is given in Section 2 of the online supplement (see Appendix H).

Corollary 2. For 1 ≤ y0 ≤ s, we have
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q
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s

k
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s

,
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α as
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,

with

p0,0 =


y0−1
x=0

ax

x!
+


s−y0−1
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In Appendix D, further simplifications of the above expressions are given for the multi-server special cases: y0 = 1
(highest reservation) and y0 = s (non-idling).

4.3.2. Non-idling case for Model A
Weprovide in Proposition 3 closed-form expressions for E(W1), Pb, Pa andΨ . The proof is given in Section 3 of the online

supplement (see Appendix H).

Proposition 3. For the non-idling case, we have

p0,0 =


s−1
x=0

ax

x!
+

as
s!

 k
x=0
λx

x
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,
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p0,0,

and

E(W1) =
Pa − Pb

β(1 − Ψ − Pa)
.

5. Numerical experiments

We investigate the benefits of the callback offer and the impact of the policy parameters on the system performance.
The policy parameters are the state-dependent number of agents reserved for inbounds, and the threshold k for the callback
proposition. Because of the analysis complexity, the conclusions we derive are mainly based on numerical observations. For
some particular cases, we develop analytical results that provide better understanding and support the conclusions.

5.1. Benefits of the callback offer

We evaluate the benefits of the callback offer on the performance measures, in relation with the system workload. We
consider the single-server non-idling case (optimal policy, Corollary 1) of Model C with k = 0 (optimal k, Proposition 5). The
objective is to provide a simple closed-form expression of the difference between the system cost in two situations; with
and without the callback offer. Using Corollary 2, for y0 = s = 1 and k = 0 (situation with the callback option), we obtain
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(a) α = 10% and q = 40%. (b) α = 60% and q = 10%.

Fig. 8. System cost with and without the callback offer (non-idling case of Model C, s = 1, k = 0, SC = E(W1)+ 0.1E(W2)).

Pb =
αa

1+αa , Ψ =
qa

1+αa , E(W1) =
1
µ

(1−q−α)a
(1−(1−q−α)a)(1−qa) , and E(W2) =

1
µ

1+a(α/q)(1−α)(1−(1−q−α)a)
(1−a(1−α))(1−(1−q−α)a) . For y0 = s = 1 and k = ∞

(situation without the callback option), we obtain after simplification Pb =
αa

1+αa , Ψ = 0 and E(W1) =
1
µ

(1−α)a
(1−(1−α)a) . The last

situation reduces to an M/M/1 queue with balking. We do not provide for it the expression of E(W2) because outbounds do
not exist when the callback option is not offered (it is simply considered as zero). The difference in system costs between
the two situations (without the offer minus with the offer), denoted by∆(a), is then

∆(a) =
γ1

µ


(1 − α)a

(1 − (1 − α)a)
−

(1 − q − α)a
(1 − (1 − q − α)a)(1 − qa)


−
γ2

µ

1 + a(α/q)(1 − α)(1 − (1 − q − α)a)
(1 − a(1 − α))(1 − (1 − q − α)a)

.

This difference can be either positive or negative.
In Fig. 8, we illustrate the impact of the arrival rate on the system cost in the two situations (with and without the

callback offer). Fig. 8(a) reveals that the callback option can improve the system cost when the arrival rate is high. Since we
have∆(0) = −

γ2
µ
< 0, under light workload, the callback option should not be provided. Roughly speaking, if a call goes to

queue 2, then this call would loose priority. This is not useful because calls in queue 1 have anyway short waiting times.
Under a heavy workload situation, the preference is not always for using the callback option. As a tends to 1

1−α , ∆(a)

becomes equivalent to
γ1−γ2

1+αa
qa

µ(1−(1−α)a) . This expression can either be positive or negative depending on the sign of its numerator.
The higher γ1 or q are in comparison with γ2 and α, the more likely this expression would be positive. More qualitatively,
this implies that the callback offer has a positive effect only if a high importance is given to inbounds and if customers would
easily accept the callback offer (Fig. 8(a)). In the case where customers are more likely to balk than to accept the callback
offer (Fig. 8(b)), providing a callback offer would deteriorate the system cost.

Finally, we numerically observe that the function |∆(a)| is increasing in a. This induces that the benefits or the loss due
to the use of the callback option would be more apparent under a heavy workload situation. This is precisely the value of
the callback offer, that could better manage congested situations.

5.2. Impact of agent reservation

We examine here the impact of the reservation on the system performance. We first consider the two-server case in
Section 5.2.1, and second the multi-server case in Section 5.2.2.

5.2.1. Two-server case
The reason for considering the two-server case is to allow the reservation policy to be only dependent on one parameter;

the threshold y0 that defines the limit on the length of queue 2 at and abovewhich no agent should be reserved for inbounds.
An illustration of the effect of y0 on the performance measures is given for Model C in Fig. 9.

The reservation for inbounds increases in y0. Therefore, E(W1) and Pa decreases in y0 (Fig. 9(a) and (c)), and E(W2)
increases in y0 (Fig. 9(b)). We observe from Fig. 9(b) that reservation deteriorates the overall expected waiting time, E(W ).
This is related to two reasons. The first one is that agent reservation creates unproductive idling situations with one agent
idlewhile queue 2 is not empty. The latter deteriorates the overall performance of the system. The second reason is related to
the reduction of balking and abandonment of inbounds. Since reservation induces more availability of agents for inbounds,
it reduces the proportion of lost inbounds (Pa). Agents have then to treat more tasks (recall that outbounds do not abandon)
as shown in Fig. 9(d). This deteriorates the overall expectedwaiting time. It is the negative effect for reducing the proportion
of abandonment.
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(a) E(W1). (b) E(W2) and E(W ).

(c) Pa . (d) Agent utilization.

Fig. 9. Effect of y0 (s = 2, λ = 1.9, µ1 = µ2 = 1, α = q = 30%, r1 = 100%, k = 0, β = 0).

5.2.2. Impact of the call center size
We investigate the impact of the call center size s on the performance measures and its relation with the reservation

policy. Consider Model C with k = 0 (optimal k, Proposition 5) and let us define ρ as ρ =
λ

sµ1
. Proposition 4 provides

convexity results justifying that reservation policies bring higher improvement in large call centers than in small ones (recall
that non-idling is optimal in the single-server case). For large call centers, these results support therefore the well known
notion that only limited server pooling/flexibility/availability is needed [26,27].

Proposition 4. Consider the non-idling case of Model C. For the optimal threshold on queue 1 (k = 0), Pb,Ψ , E(W1) and E(W )
are decreasing and convex in s, when ρ = a/s and λ are held constant.

The proof of the proposition is given in Appendix E. Table 2 illustrates forModel C the behavior of the performancemeasures
as a function of s, when ρ is held constant and equal to 0.99. In the second and third columns, we give the upper and lower
bounds of E(W1) using the results of Section 4.3.1, respectively. The upper bound is obtained in the non-idling case and the
lower bound is obtained in the highest reservation case. In the fourth column, we compute the relative difference between
the upper and lower bounds of E(W1) so as to assess the possibilities of performance improvement for inbounds.We observe
that the higher is s, themore it is possible to improve E(W1). In the fifth column, we give the lower bound of E(W2) obtained
in the non-idling case.We do not give upper bounds of E(W2) from the extreme reservation case, since these are too high and
do not provide interesting situations for the optimization problem. In the sixth column, we give the total expected system
cost in the non-idling case.Weobserve that the expected total cost decreases in s. In the seventh, eight andninth columns,we
give the optimal performance measures obtained via the algorithm proposed in Section 4.1, under the optimal reservation
policy. In the last column, we compute the relative difference between the optimal system cost and that obtained in the
non-idling case. We observe that the larger is the call center, the higher is the agent reservation for inbounds. For small call
centers (for s ≤ 5 in Table 2), non-idling is optimal. As s increases, we observe for the optimal reservation policy that E(W1)
moves from the neighborhood of its upper bound to that of its lower bound, and that E(W2) remains relatively close to its
lower bound. This implies that the relative difference between the system cost in the optimal case and that in the non-idling
case increases in the call center size.

In summary, the main conclusion of this section is that reservation has more potential of improvement in large call
centers, since large call centers allow for less flexibility than small ones.



B. Legros et al. / Performance Evaluation 95 (2016) 1–40 17

Table 2
Effect of s (ρ = 0.99, µ1 = µ2 = 1, r1 = 1, α = β = 0, q = 30%, k = 0, SC = E(W1)+ 0.01E(W2)).

s E(W1)max E(W1)min rd E(W2)min SCNI E(W1)op E(W2)opt SCopt rd

1 3.178 3.178 0% 289.36 6.07 3.178 289.36 6.07 0.00%
2 1.584 1.367 −14% 145.57 3.04 1.584 145.57 3.04 0.00%
5 0.628 0.510 −19% 68.16 1.31 0.628 68.16 1.31 0.00%

10 0.304 0.170 −44% 26.09 0.56 0.250 29.04 0.54 −4.27%
20 0.150 0.063 −60% 13.17 0.28 0.098 15.12 0.25 −11.48%
50 0.058 0.018 −69% 6.39 0.12 0.029 6.45 0.09 −23.28%

100 0.028 0.005 −82% 3.93 0.07 0.009 4.04 0.05 −26.11%
500 0.004 0.001 −89% 0.70 0.01 0.001 0.71 0.01 −29.22%

5.3. Impact of the threshold k

We examine the optimization of the threshold k. We also investigate the relation between reservation and k. Finally, the
policy of a fixed threshold k is evaluated in comparison with a state-dependent k.

5.3.1. Exogenous parameters and threshold k
Proposition 5 gives, for the non-idling case for Model C, first order monotonicity results in k.

Proposition 5. In the non-idling case for Model C, Pb is insensitive to k, Ψ is decreasing in k, E(W1) and E(W2) are increasing in
k, for k ≥ 0.

The proof of the proposition is given in Appendix F. A consequence of the monotonicity results of E(W1) and E(W2) is that
k = 0 is optimal for non-idling Model C. Yet, k = 0 is not the optimal value for Models A, B and G because of inbounds
balking, abandonment and/or the possible non-availability of a called back customer.

Balking and call acceptance parameters for Model B. We consider the impact of αx and qx (x ≥ s) on the monotonicity of
the performance measures in k for Model B. In Fig. 10, we consider three numerical cases:

• Case 1: qx = 0.4 and αx = min(0.5, 0.05x),
• Case 2: qx = min(0.4, 0.05x) and αx = 0.5,
• Case 3: qx = 0.1 and αx = min(0.5, 0.05x2),

for x ≥ s. Cases 1 and 3 illustrate situations with non constant balking parameters and Case 2 illustrates a situation with
non constant callback acceptance parameters. The monotonicity results in k in Cases 1 and 2 are identical to those derived
for the non-idling case of Model C. However, in Case 3, E(W1) is non-increasing in k.

When αx is strongly increasing in x (Case 3), the inbounds expected waiting time can be non-increasing in k (Fig. 10(a)).
The proportion of inbounds increases in k. Therefore, inbounds arrive more often at a long queue 1 (large values of x), and
the balking would then be more important (large values of αx). Although increasing k has the negative effect of increasing
balking, it also has the positive effect of reducing the system workload by reducing arrivals that enter the system. This can
improve the expectedwaiting time of inbounds. From the numerical experiments, we however observe that qx do not impact
the first order monotonicity results in k. This is related to the fact that qx has no effect on the systemworkload, and that the
callback offer is only proposed for x ≥ k.

Abandonment forModel A. Figs. 11 and 12 illustrate the impact of k on the performancemeasures, for different values of the
abandonment rate β . We observe that the abandonment in queue 1 only affects the monotonicity properties of E(W1) and
E(W2). This explains why k = 0 is no longer necessarily optimal. Two phenomenons are in competition when β > 0. From
the one hand, increasing k reduces the number of callbacks and increases thus the proportion of inbounds, which would in
turn increase E(W1) and E(W2). From the other hand, the increasing of the number of customers in queue 1 increases also
the departure rate (after abandonment or service) of inbounds from the system, whichmakes the systemmore efficient and
may decrease E(W1) and E(W2). The first (second) phenomenon is predominant for small (large) values of β . We observe
that the non-increasing of E(W2) requires higher arrival or abandonment rates than the non-increasing of E(W1) (Fig. 12).
The behavior of the other performance measures is more intuitive; the proportion of abandonment increases in k, and the
proportion of callbacks decreases in k.

Outbound service process for Model G. Let us define T , a random variable, representing the total time spent by the system
capacity to serve an outbound call. For a given outbound call, this corresponds to the summation of the durations spent by
agents to handle eventually its non-availability situations plus its service duration.

The case k = 0 is also not necessarily optimal when the overall expected time spent to serve an outbound call is larger
than the expected time to serve an inbound one. In Proposition 6, we give the expected value and the standard deviation of
the time spent by the system capacity to serve an outbound call.
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(a) E(W1). (b) E(W2).

(c) Pb . (d) Ψ .

Fig. 10. Impact of balking and call acceptance parameters (s = 1, λ = 0.5, µ1 = 1, r1 = 100%, non-idling case).

(a) E(W1). (b) E(W2).

(c) Pa . (d) Ψ .

Fig. 11. Impact of abandonment (s = 1, λ = 1.2, µ1 = 1, α = q = 30%, r1 = 100%).
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(a) E(W1). (b) E(W2).

Fig. 12. Impact of abandonment (s = 10, λ = 12, µ1 = 1, β = 3, α = 10%, q = 30%, r1 = 100%).

(a) E(W1). (b) E(W2).

Fig. 13. Impact of the service process (s = 1, λ = 0.75, µ1 = 1, µ2 = 1.5, µ3 = 10, α = β = 0, q = 30%, r1 = 0%, r2 = 7%).

Proposition 6. The random time T has a phase type distribution with expected value

E(T ) =
r1

r1 + r2

1
µ1

+
r2

r1 + r2

1
µ2

+
1 − r1 − r2
r1 + r2

1
µ3
,

and standard deviation

σ(T ) =


r1(4 − 3r1 − 2r2)

µ2
1(r1 + r2)(2 − r1 − r2)

+
r2(4 − 3r2 − 2r1)

µ2
2(r1 + r2)(2 − r1 − r2)

+
(1 − r1 − r2)(4 − r1 − r2)
µ2

3(r1 + r2)(2 − r1 − r2)
.

The proof of this proposition is given in Appendix G. From Proposition 6, we deduce that outbounds require a larger
expected time of treatment than that of inbounds if and only if

1 − r1 − r2
µ3

> r2


1
µ1

−
1
µ2


. (3)

Inequality (3) simply states that if the time lost in handling a non-available situation is larger than the time saved due to
fast outbounds (those who have already resolved a part of their problem), then outbounds require a larger expected time of
treatment.

Fig. 13 illustrates a situation where the overall expected time of an outbound treatment, E(T ), is larger than that of
the service time of an inbound, 1/µ1. We observe that the monotonicity properties in k of the performance measures
E(W1), Pa and Ψ are not affected by the parameters of service of outbounds, because of the higher priority given to
inbounds. The reason is that, during their sojourn in the queue, the latter will only assist at service durations that are
exponentially distributed with rate µi (i = 1, 2, 3). We observe that E(W2) is either strictly increasing in k or decreasing
then increasing. The second situation occurs when outbounds are treated within a much larger time than that of inbounds.
Two phenomenons are in competition; the first one already mentioned earlier is that increasing k reduces the number of
outbounds which would suffer from the high proportion of prioritized inbounds. The second one is that if k is too small, the
proportion of outbounds can be too important for the system capacity. It might then take too long time to serve them.
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Table 3
Impact of k (λ = 49.5, s = 50, µ1 = 1, µ2 = 1.5, µ3 = 10, r1 = 50%, r2 = 30%, α = 10%, q = 30%, β = 0.5, SC = E(W1)+ 0.01E(W2)+ Pa).

k E(W1)max E(W1)min rd Pamax Pamin rd E(W2) SCNI

0 0.013 0.010 −21.16% 4.85% 4.04% −20.13% 0.343 0.065
1 0.015 0.012 −19.68% 5.02% 4.20% −19.62% 0.497 0.070
2 0.018 0.015 −18.81% 5.21% 4.44% −17.50% 0.656 0.076
3 0.020 0.017 −18.34% 5.32% 4.56% −16.87% 0.799 0.081
4 0.023 0.019 −17.76% 5.43% 4.68% −16.17% 0.918 0.086
5 0.025 0.021 −17.34% 5.52% 4.77% −15.80% 1.039 0.090
6 0.027 0.023 −17.18% 5.56% 4.82% −15.22% 1.158 0.094
7 0.029 0.025 −15.65% 5.69% 4.96% −14.78% 1.247 0.098
8 0.031 0.027 −12.55% 5.74% 5.08% −13.06% 1.349 0.102
9 0.032 0.029 −9.63% 5.82% 5.28% −10.23% 1.444 0.105

k E(W1)opt E(W2)opt Paopt SCopt rd

0 0.011 0.456 4.12% 0.057 −12.07%
1 0.014 0.594 4.26% 0.063 −10.69%
2 0.017 0.687 4.48% 0.068 −10.44%
3 0.019 0.861 4.63% 0.074 −9.72%
4 0.021 0.963 4.80% 0.079 −8.84%
5 0.024 1.087 4.99% 0.084 −6.83%
6 0.027 1.158 5.56% 0.094 0.00%
7 0.029 1.247 5.69% 0.098 0.00%
8 0.031 1.349 5.74% 0.102 0.00%
9 0.032 1.444 5.82% 0.105 0.00%

5.3.2. Reservation and threshold k
We investigate here the relation between the agent reservation policy and the choice for the threshold k. We proved

in Proposition 2 that for Model A, the higher is q, the less agents should be reserved for inbounds. The reason is the low
proportion of inbounds. The impact of k is similar to that of q. Increasing k is equivalent to decreasing q, therefore the higher
k is the more agents should be reserved for inbounds. This observation agrees with the classical idea in control problems
stating that the longest queue should be preferred: through the choice of the reservation level in our model.

However, Table 3 reveals that this observation is no longer true whenModel G is considered. In this table, we provide the
performance measures for different values of k. Similarly to Table 2, we provide the upper and lower bounds for E(W1) and
Pa to examine the possibilities of improvement. We also compute the lower bound for E(W2). In the presented numerical
illustration, the two extreme situations are again the non-idling case and the extreme reservation case. In the last five
columns, we give the optimal values of the performance measures. We also compute the relative difference found in the
comparison between the non-idling case and the optimal case.

On the contrary to what one would expect, we observe here that agent reservation decreases in k. For example in
Table 3, when k ≥ 6, non-idling is optimal. The reason is related to two phenomenons. The first one is the possible non-
availability of outbounds (20% are not available). The second one is the smaller impact of outbounds in service on inbounds
performance when r1 < 1 than when r1 = 1 (50% of outbounds occupy agents a shorter time than inbounds). The low
priority of outbounds together with their non-full availability make queue 2 difficult to reduce, especially when inbounds
are numerous in the system (i.e., when k is high). Therefore, the increasing of E(W2) in k is strong (see column 8) and
reservation for inbounds should not be provided when k is high. Because outbounds occupy agents a shorter time than
inbounds when r1 < 1, outbounds have less impact on E(W1) in Model G than inModel A. Thus, the effect of k and the agent
reservation on E(W1) is weaker for Model G than for Model A (see columns 2 and 3). Increasing reservation when k is high
has a strong impact on E(W2) but a small one on E(W1), which advocates for a non-idling policy. The deterioration of E(W2)
with reservation is weaker when k is small, so, reservation should be provided in this case to reduce E(W1).

5.3.3. Value of a fixed threshold k
We have defined the threshold parameter k on the number of calls in queue 1 to control the decision of proposing

or not the callback offer. We have shown that k = 0 is optimal for the non-idling case of Model C. In other words, the
callback offer should be proposed to all delayed customers. It is also the case for Models A, B and G in most cases. Yet, with
significant abandonment or large treatment time for outbounds, k = 0 may not be any longer optimal. In the modeling,
the value of a fixed threshold k comes from its simplicity and from the analysis tractability for the performance evaluation.
However, a fixed threshold kmay not be optimal. It is then also interesting to evaluate the performance of our fixed-k policy
in comparison with a state-dependent-k policy for the proposition of the callback offer upon arrival.

For Model A with constant balking and callback acceptance parameters, the value functions defined in Section 2 can be
rewritten, for n ≥ 0, including the decision to propose or not the callback offer through the operatorWn, as

Un+1(x, y) = γ1(x − s)+ + γ2y + λWn(x, y)+ β(x − s)+(Vn(x − 1, y)+ γ3)+ min(s, x)µVn(x − 1, y)
+

1 − λ− β(x − s)+ − min(s, x)µ1


Vn(x, y), for x, y ≥ 0,
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Fig. 14. Optimal switching curve for the callback offer (λ = 1.2, µ1 = 1, q = α = 30%, β = 1, SC = E(W1)+ 0.0005E(W2)+ 0.1Pa, r1 = 1, s = 1).

Table 4
Comparison between the two threshold modelings (µ1 = 1, r1 = 1).

Cases Parameters
λ s β α q SC

1 1.2 1 1 30% 30% E(W1)+ 0.0005E(W2)+ 0.1Pa
2 0.99 1 2 0% 80% E(W1)+ 0.00004E(W2)+ 0.01Pa
3 0.8 1 1.5 10% 40% E(W1)+ 0.0001E(W2)+ 0.01Pa
4 12 10 3 10% 60% E(W1)+ 0.0001E(W2)+ 0.2Pa
5 120 100 3 10% 60% E(W1)+ 0.0000001E(W2)

Cases Optimal fixed-k policy Optimal state-dependent-k policy
k E(W1) E(W2) Pa SC E(W1) E(W2) Pa SC

1 3.1 0.095 39.200 46.8% 0.161 0.095 36.100 46.8% 0.160
2 3.9 0.020 897.980 42.2% 0.060 0.021 464.260 41.3% 0.044
3 6.8 0.030 61.878 40.7% 0.041 0.031 35.689 40.8% 0.038
4 1.2 0.044 3.338 20.1% 0.085 0.044 3.338 20.1% 0.085
5 0.9 0.014 580.393 12.0% 0.014 0.014 542.040 12.0% 0.014

with

Vn+1(x, y) = min(Un+1(x + 1, y − 1),Un+1(x, y)),

for y > 0 and 0 ≤ x < s and Vn+1(x, y) = Un+1(x, y) in the remaining cases, and

Wn+1(x, y) = min(α(Un+1(x, y)+ γ3)+ (1 − α)Un+1(x + 1, y), α(Un+1(x, y)+ γ3)

+ qUn+1(x, y + 1)+ (1 − q − α)Un+1(x + 1, y)),

for x ≥ s and Wn+1(x, y) = Un+1(x, y) in the remaining cases. We chooseW0(x, y) = V0(x, y) = U0(x, y) = 0, for x, y ≥ 0.
In Fig. 14, we present the optimal decision found through value iterations. We only present the states where an action

on the callback offer has to be taken (x ≥ s). We observe that the optimal decision for the callback offer if of switch type.
The optimal decision for the points on the curve is not to propose the callback offer. To the contrary to the reservation policy
found in Section 3, the switching curve is not monotonous in x or in y.

We observe that if the optimal decision in a given state (x, y) is not to propose the callback offer, then the same decision
should be taken in state (x, y + 1). The reason is related to the congestion of queue 2. The decision not to propose the offer
is taken in order to use call abandonment in queue 1 which decreases the system workload. Therefore, if the system is too
congested with y outbounds in queue 2, it would also be with y + 1 outbounds in queue 2. The decision as a function of x is
more complex. For small values of x, the decision is more likely to give the offer so as to reduce the number of customers in
queue 1. This decision can be taken because the system is not congested. For higher values of x, the offer can be interrupted
to reduce theworkload in the system by letting customers abandon fromqueue 1. For even higher values of x, the proportion
of abandonment and the waiting time in queue 1 can be so significant that the decision is again to propose the callback offer
even if it would increase the system workload.

One can compare between the twomodelings, with a fixed or a state-dependent k using simulations. The optimal fixed-k
is assumed to be a real number in order to achieve a lower system cost than if kwould be an integer (in practice, this means
that randomization between two adjacent thresholds is allowed). For various settings, Table 4 reveals that the difference
between the optimal system cost and the cost found with a fixed-k is not important. However, it is notable that the optimal
state-dependent policy improves E(W2) and almost do not affect the other metrics.

For Model G, the optimal decisions for the callback offer can be obtained using the same approach. However, further
assumptions should bemade on the balking parameters when the callback option would be proposed or not. For instance, it
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Table 5
Impact of the parameters.

E(W1) E(W2) Pa

Increasing s + + +

Increasing the agent reservation + − +

Increasing k − − −

Increasing k with a high balking/abandonment parameters + +,− −

Increasing k with a high difficulty to serve outbounds − +,− −

seems appropriate to assume that the callback offer would reduce the balking behavior. In this case, the conclusion derived
above are still valid. The callback offer reduces then at the same time balking, abandonment and thewaiting time in queue 1,
but it increases the system workload. For Model G, either the treatment time of outbounds is shorter than that of inbounds
and k = 0 is thus optimal, or it is not and the conclusions derived above are also still valid.

To conclude Section 5.3, k = 0 is optimal when the balking parameters are constant (αx = α, x ≥ s), no abandonment is
considered (β = 0), or the treatment time of an outbound call is lower or equal than that of an inbound one (E(T ) ≤ 1/µ1).
Increasing k increases the size of queue 1. When αx is strongly increasing in x, this also increases the balking proportion
which reduces the effective arrival rate. When β > 0, call abandonment helps to reduce the length of queue 1. If much
more importance is given to the waiting time in queue 1 than that to abandonment (γ1 ≫ γ3), then k > 0 is useful to
discharge the system. If the treatment time of an outbound call is large, it is also useful to have k > 0 in order to avoid
too high proportion of outbounds. The relation between the optimal reservation policy and the optimal k depends on the
service process of outbounds. If this one is identical to that of inbounds (Model A), then more agents should be reserved for
inbounds as k increases.
Summary of Section 5 results. Table 5 summaries the impact of the parameters on the objective function components. We
use the sign ‘‘+’’ for a positive effect and the sign ‘‘−’’ for a negative one.

In most observed situations, k = 0 is optimal and the reservation policy can be obtained via the MDP approach from
Section 3. In the remaining cases, a finite number of steps should be done to find the optimal value of kwith its corresponding
reservation policy (by starting from the case k = 0 and by incrementing k by one at each step). The number of tests is finite
because the deterioration of E(W2) in k after a given value of k is much faster than the eventual improvement of E(W1) in
k. Beyond this value of k, any reservation policy would anyway further deteriorate E(W2). Moreover, Pa deteriorates with k.
Hence, after a given value of k, the total expected system cost only increases in k and the search for the optimal value of k
should be stopped at that point.

6. Conclusions and future research

We considered a call center that offers two channels: real-time telephone service and postponed (callback) service.
Customers choosewhich channel to use based on a probabilistic choicemodel.We demonstrated the operational advantages
of agent reservation in this context.

The key operational findings of this paper are that (1) the value of the callback option is more significant under heavily
loaded situations, (2) the benefits of agent reservation are more apparent in large call centers than in small ones, (3)
reservation increases the agent utilization due to the abandonment reduction, (4) reservation is not likely to be used under
light or heavily loaded situations, (5) the callback offer should be proposed to all delayed customers except when the
abandonment is significant or when the overall treatment time of an outbound is much larger than that of an inbound.
These operational findings came together with theoretical contributions. The major ones are (1) the proof that non-idling is
optimal in the single-server case, (2) the proof of the optimality of a threshold policy in the two-server case, (3) the algorithm
proposed for the performance evaluation when transition rates are assumed to be constant.

Several interesting areas of future research arise. Itwould be useful to empirically validate the customer reactionmodel to
the callback offer through real data analysis. It is also interesting to extend the proof of the optimal policy for the two-server
case to that for the multi-server case. Another research avenue is to consider other optimization problem formulations,
for example in terms of quantiles on the waiting time distributions of inbound and outbound calls. Finally, it would be
interesting to consider non-stationary arrival parameters and investigate its impact on job scheduling.
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Appendix A. Proof of Theorem 1

We first rewrite the value functions in the two-server case for Model A (µ1 = µ2 = µ, r1 = 1). So as to simplify the
presentation of the proof, we redefine the states as follows. The parameter z denotes the state of the agents team (z = 0
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when both agents are idle; z = 1 when only one agent is busy with an inbound or an outbound call; and z = 2 when both
agents are busy), x is redefined here as the number of inbounds in queue 1 and y is the number of outbounds in queue 2. We
have for n ≥ 0,

Un+1(0, 0, y) = γ2y + λVn(1, 0, y)+ (1 − λ)Vn(0, 0, y), for y ≥ 0,
Un+1(1, 0, y) = γ2y + λVn(2, 0, y)+ µVn(0, 0, y)+ (1 − λ− µ)Vn(1, 0, y), for y ≥ 0,

Un+1(2, x, y) = γ1x + γ2y + λ

1(0≤x<k) ((1 − αx)Vn(2, x + 1, y)+ αx(Vn(2, x, y)+ γ3))

+ 1(k≤x<N) (qxVn(2, x, y + 1)+ αx(Vn(2, x, y)+ γ3)+ (1 − qx − αx)Vn(2, x + 1, y))

+ 1(x=N)(qN−1Vn(2, x, y + 1)+ (1 − qN−1)(Vn(2, x, y)+ γ3))


+ βx(Vn(2, x − 1, y)+ γ3)+ 2µ

1(x=0)Vn(1, 0, y)+ 1(x>0)Vn(2, x − 1, y)


+ (1 − λ− βx − 2µ) Vn(2, x, y), for x, y ≥ 0,

with Vn+1(0, 0, y) = Un+1(1, 0, y− 1) for y > 0 (recall that we assume that it is optimal to serve an outbound call when all
agents are idling); Vn+1(1, 0, y) = min(Un+1(2, 0, y − 1),Un+1(1, 0, y)) for y > 0; and Vn+1(z, x, y) = Un+1(z, x, y) in the
remaining cases. We choose V0(z, x, y) = U0(z, x, y) = 0, for z = 0, 1, 2 and x, y ≥ 0.

We define a class of functions F from {0, 1, 2} × N2 to R as follows: f ∈ F if

f (2, x + 1, y) ≥ f (2, x, y), (4)
f (1, 0, y) ≥ f (0, 0, y), (5)
f (2, 0, y) ≥ f (1, 0, y), (6)
f (2, x, y + 1) ≥ f (2, x, y), (7)
f (0, 0, y + 1) ≥ f (0, 0, y), (8)
f (1, 0, y + 1) ≥ f (1, 0, y), (9)
f (2, x, y)+ f (2, x + 1, y + 1) ≥ f (2, x + 1, y)+ f (2, x, y + 1), (10)
f (0, 0, y)+ f (1, 0, y + 1) ≥ f (1, 0, y)+ f (0, 0, y + 1), (11)
f (1, 0, y)+ f (2, 0, y + 1) ≥ f (2, 0, y)+ f (1, 0, y + 1), (12)
f (2, x, y + 2)+ f (2, x + 1, y) ≥ f (2, x, y + 1)+ f (2, x + 1, y + 1), (13)
f (0, 0, y + 2)+ f (1, 0, y) ≥ f (0, 0, y + 1)+ f (1, 0, y + 1), (14)
f (1, 0, y + 2)+ f (2, 0, y) ≥ f (1, 0, y + 1)+ f (2, 0, y + 1), (15)

for x, y ≥ 0. Relations (4) and (7) define a class of increasing functions in x and in y. Relation (10) defines supermodularity
for z = 2. By summing up Relations (10) and (13) we obtain f (2, x, y) + f (2, x, y + 2) ≥ 2f (2, x, y + 1), by summing up
Relations (11) and (14) we obtain f (0, 0, y)+ f (0, 0, y + 2) ≥ 2f (0, 0, y + 1), and by summing up Relations (12) and (15)
we obtain f (1, 0, y) + f (1, 0, y + 2) ≥ 2f (1, 0, y + 1). Thus if f ∈ F , then f is convex in y. Relation (13) means that the
function f (2, x, y + 1)− f (2, x + 1, y) is increasing in y.

Remark 1. For the multi-server case of Model G, we need to add another relation to the class of functions defined below.
The additional relation is f (x+ 2, y, s2, s3)+ f (x, y+ 1, s2, s3) ≥ f (x+ 1, y, s2, s3)+ f (x+ 1, y+ 1, s2, s3). It is required to
prove that the relation f (x, y+2, s2, s3)+ f (x+1, y, s2, s3) ≥ f (x, y+1, s2, s3)+ f (x+1, y+1, s2, s3) propagates through
the minimizing operator. The proof through value iteration is hard to do for the arrival term if x = s + k − 2, and for the
service term if 0 ≤ x + s2 + s3 ≤ s − 2. It is however doable for the remaining cases.

To simplify the presentation, we denote by ‘‘serve’’ the decision action to serve an outbound call, and by ‘‘keep’’ the
decision action to keep an outbound call in queue 2. The proof of the optimality of the threshold policy reduces to show that
Relation (13) is true for Un, n ≥ 0. We next prove by induction on n that both Vn and Un are in F . We divide the proof into
the following 5 steps:

• Step 1. We prove that V0,U0 ∈ F .
• Step 2. We prove that if Un ∈ F , then Vn ∈ F , for n ≥ 0.
• Step 3. We prove that the cost term G(z, x, y) = γ1x + γ2y is in F .
• Step 4. We prove for a given n ≥ 0 that if Vn ∈ F , then the following arrival term is also in F :

An(2, x, y) = 1(0≤x<k) ((1 − αx)Vn(2, x + 1, y)+ αx(Vn(2, x, y)+ γ3))

+1(k≤x<N) (qxVn(2, x, y + 1)+ αx(Vn(2, x, y)+ γ3)+ (1 − qx − αx)Vn(2, x + 1, y))
+ 1(x=N)(qN−1Vn(2, x, y + 1)+ (1 − qN−1)(Vn(2, x, y)+ γ3)),

for x, y ≥ 0, An(1, 0, y) = Vn(2, 0, y) and An(0, 0, y) = Vn(1, 0, y) for y ≥ 0.
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• Step 5.We prove for a given n ≥ 0 that if Vn ∈ F , then the following departure term is also in F :

Dn(2, x, y) = βx(Vn(2, x − 1, y)+ γ3)+ 2µ

1(x=0)Vn(1, 0, y)+ 1(x>0)Vn(2, x − 1, y)


+ (1 − λ− βx − 2µ) Vn(2, x, y),

for x, y ≥ 0, Dn(1, 0, y) = µVn(0, 0, y)+ (1 − λ− µ)Vn(1, 0, y) and Dn(0, 0, y) = (1 − λ)Vn(0, 0, y) for y ≥ 0.

The proofs for the previous five steps are given below.
Step 1. For x, y ≥ 0 and z = 0, 1, 2, V0(z, x, y) = U0(z, x, y) = 0. Then V0,U0 ∈ F .
Step 2. Assume that for a given n ≥ 0, Un ∈ F . We only consider the non-trivial cases where z = 0 or z = 1 and y > 0. In
the other cases Un = Vn. Therefore we only need to show Relations (5), (6), (8), (9), (11), (12), (14) and (15).

– For Relations (5) and (8), we have

Vn(0, 0, y) = Un(1, 0, y − 1), for y > 0. (16)

If ‘‘keep’’ is optimal in (1, 0, y), then Vn(1, 0, y) = Un(1, 0, y). Combining Eq. (16) with Relation (9) for Un leads to
Vn(0, 0, y) ≤ V (1, 0, y) and proves Relations (5) for Vn. If ‘‘serve’’ is optimal in (1, 0, y), then Vn(1, 0, y) = Un(2, 0, y − 1).
Combining Eq. (16) with Relation (6) for Un leads to Vn(0, 0, y) ≤ V (1, 0, y) and proves Relations (5) for Vn.
We haveVn(0, 0, y+1) = Un(1, 0, y). Combining Inequality (16)with Relation (9) forUn leads toVn(0, 0, y) ≤ V (0, 0, y+1).
Therefore in all cases, Relations (5) and (8) hold for Vn.

– For Relations (6) and (9), we have

Vn(1, 0, y) ≤ Un(2, 0, y − 1), for y > 0, (17)
Vn(1, 0, y) ≤ Un(1, 0, y), for y ≥ 0. (18)

Observe that Vn(2, 0, y) = Un(2, 0, y). Combining Inequality (17) with Relation (7) for Un proves Relation (6).
If ‘‘keep’’ is optimal in (1, 0, y + 1), then Vn(1, 0, y + 1) = Un(1, 0, y + 1). Combining equality (18) with Relation (9) for Un
proves Relation (9) for Vn. If ‘‘serve’’ is optimal in (1, 0, y + 1), then Vn(1, 0, y + 1) = Un(2, 0, y). Combining equality (17)
with Relation (7) for Un proves (9) for Vn. Therefore in all cases, Relations (6) and (9) hold for Vn.

– For Relation (11), we have

Vn(1, 0, y)+ Vn(0, 0, y + 1) ≤ 2Un(1, 0, y) for y ≥ 0, (19)
Vn(1, 0, y)+ Vn(0, 0, y + 1) ≤ Un(2, 0, y − 1)+ Un(1, 0, y) for y ≥ 0. (20)

If ‘‘keep’’ is the optimal action in state (1, 0, y + 1), for y > 0, then Vn(0, 0, y) + Vn(1, 0, y + 1) = Un(1, 0, y − 1) +

Un(1, 0, y+ 1). Thus, combining the convexity in y of Un and Inequality (19) proves Relation (11) for Vn, for y ≥ 0. If ‘‘serve’’
is the optimal action in state (1, 0, y + 1), for y > 0, then Vn(0, 0, y) + Vn(1, 0, y + 1) = Un(1, 0, y − 1) + Un(2, 0, y).
Combining Relation (12) for Un and Inequality (20) proves Relation (11) for Vn, for y > 0. In all cases, Relation (11) then
holds for Vn.

– For Relation (12), we have

Vn(2, 0, y)+ Vn(1, 0, y + 1) ≤ Un(2, 0, y)+ Un(1, 0, y + 1) for y ≥ 0, (21)
Vn(2, 0, y)+ Vn(1, 0, y + 1) ≤ 2Un(2, 0, y) for y ≥ 0. (22)

If ‘‘keep’’ is the optimal action in state (1, 0, y), for y > 0, then Vn(1, 0, y)+ Vn(2, 0, y + 1) = Un(1, 0, y)+ Un(2, 0, y + 1).
Thus, Relation (12) for Un and Inequality (21) prove Relation (12) for Vn, for y ≥ 0. If ‘‘serve’’ is the optimal action in state
(1, 0, y), for y > 0, then Vn(1, 0, y)+ Vn(2, 0, y + 1) = Un(2, 0, y − 1)+ Un(2, 0, y + 1). Combining the convexity in y of
Un and Inequality (22) proves Relation (12) for Vn, for y > 0. In all cases, Relation (12) then holds for Vn.

– For Relation (14), we have

Vn(0, 0, y + 1)+ Vn(1, 0, y + 1) ≤ Un(1, 0, y)+ Un(1, 0, y + 1) for y ≥ 0, (23)
Vn(0, 0, y + 1)+ Vn(1, 0, y + 1) ≤ Un(1, 0, y)+ Un(2, 0, y) for y ≥ 0. (24)

If ‘‘keep’’ is the optimal action in states (1, 0, y), for y > 0, then Vn(0, 0, y+ 2)+ Vn(1, 0, y) = Un(1, 0, y+ 1)+Un(1, 0, y).
Inequality (23) proves Relation (14) for Vn, for y ≥ 0. If ‘‘serve’’ is the optimal action in state (1, 0, y), for y ≥ 0, then
Vn(0, 0, y + 2) + Vn(1, 0, y) = Un(1, 0, y + 1) + Un(2, 0, y − 1). Combining next Relation (15) for Un and Inequality (24)
proves Relation (14) for Vn, for y ≥ 0. Finally in all cases, Relation (14) is true for Vn.

– For Relation (15), we have

Vn(1, 0, y + 1)+ Vn(2, 0, y + 1) ≤ Un(1, 0, y + 1)+ Un(2, 0, y + 1) for y ≥ 0, (25)
Vn(1, 0, y + 1)+ Vn(2, 0, y + 1) ≤ Un(2, 0, y)+ Un(2, 0, y + 1) for y ≥ 0. (26)

If ‘‘keep’’ is the optimal action in states (1, 0, y+2), for y ≥ 0, then Vn(1, 0, y+2)+Vn(2, 0, y) = Un(1, 0, y+2)+Un(2, 0, y).
Combining next Relation (15) for Un and Inequality (25) proves Relation (15) for Vn, for y ≥ 0. If ‘‘serve’’ is the optimal action
in state (1, 0, y + 2), for y ≥ 0, then Vn(1, 0, y + 2) + Vn(2, 0, y) = Un(2, 0, y + 1) + Un(2, 0, y). Inequality (26) proves
Relation (15) for Vn, for y ≥ 0. Finally in all cases, Relation (15) is true for Vn.
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Step 3. The step is easy to prove and directly follows from [25, page 33].
Step 4. Assume that Vn ∈ F , for a given n ≥ 0. We now prove that An ∈ F . In Relations (5), (7)–(9), (11) and (14), x
is constant and the arrival of a new call has the same effect on each term of the relation (either increasing the number of
customers in queue 1 by one, or changing z into z +1). Moreover, since the transition rates are constant, the induction from
Vn to An is straightforward (see [25, page 35]).

Next, the other relations have to be shown to prove the induction from Vn to An. For Relations (4), (7), (10) and (13), the
case x < k − 1 is a simplification of the case k ≤ x < N − 1 because the possibility of going to queue 2 is not considered.
We therefore only show the case k ≤ x < N − 1.

– For Relation (4), if x = k − 1, then

An(2, x + 1, y)− An(2, x, y) = qkVn(2, x + 1, y + 1)+ αk(Vn(2, x + 1, y)+ γ3)+ (1 − αk − qk)Vn(2, x + 2, y)
− (1 − αk−1)Vn(2, x + 1, y)− αk−1(Vn(2, x, y)+ γ3)

= qk (Vn(2, x + 1, y + 1)− Vn(2, x + 1, y))+ αk−1(Vn(2, x + 1, y)− Vn(2, x, y))
+ (1 − αk − qk)(Vn(2, x + 2, y)− Vn(2, x + 1, y))+ γ3(αk − αk−1) ≥ 0,

since Vn is increasing in x and in y.
If k ≤ x < N − 1, then

An(2, x + 1, y)− An(2, x, y)
= qx+1Vn(2, x + 1, y + 1)+ αx+1(Vn(2, x + 1, y)+ γ3)+ (1 − αx+1 − qx+1)Vn(2, x + 2, y)

− qxVn(2, x, y + 1)− αx(Vn(2, x, y)+ γ3)− (1 − αx − qx)Vn(2, x + 1, y)
= qx (Vn(2, x + 1, y + 1)− Vn(2, x + 1, y))+ (qx+1 − qx)Vn(2, x + 1, y + 1)

+ αx(Vn(2, x + 1, y)− Vn(2, x, y))+ (αx+1 − αx)Vn(2, x + 1, y)+ γ3(αx+1 − αx)

+ (1 − αx+1 − qx+1)(Vn(2, x + 2, y)− Vn(2, x + 1, y))+ (αx + qx − αx+1 − qx+1)Vn(2, x + 1, y)
≥ (qx+1 − qx)(Vn(2, x + 1, y + 1)− Vn(2, x + 1, y)) ≥ 0,

since Vn is increasing in y and qx is increasing in x.
If x = N − 1, then

An(2, x + 1, y)− An(2, x, y) = qxVn(2, x + 1, y + 1)+ (1 − qx)(Vn(2, x + 1, y)+ γ3)

− qxVn(2, x, y + 1)− αx(Vn(2, x, y)+ γ3)− (1 − αx − qx)Vn(2, x + 1, y)
= αx(Vn(2, x + 1, y + 1)− Vn(2, x, y))+ qx(Vn(2, x + 1, y + 1)− Vn(2, x, y + 1))

+ γ3(1 − qx − αx) ≥ 0,

since Vn is increasing in x and in y. Finally in all cases, Relation (4) is true for An.
– For Relation (6), we may write

An(2, 0, y)− An(1, 0, y) = (1 − α0)Vn(2, 1, y)+ α0(Vn(2, 0, y)+ γ3)− Vn(2, 0, y)
= (1 − α0)(Vn(2, 1, y)− Vn(2, 0, y))+ α0γ3 ≥ 0,

since Relation (4) is true for Vn. Hence, Relation (6) is true for An.
For the following relations, we do not write the terms in γ3 since the do disappear in the considered differences.
– For Relation (10), if x = k − 1, then

An(2, x, y)+ An(2, x + 1, y + 1)− An(2, x, y + 1)− An(2, x + 1, y)
= αk−1Vn(2, x, y)+ (1 − αk−1)Vn(2, x + 1, y)+ qkVn(2, x + 1, y + 2)+ αkVn(2, x + 1, y + 1)

+ (1 − αk − qk)Vn(2, x + 2, y + 1)− αk−1Vn(2, x, y + 1)− (1 − αk−1)Vn(2, x + 1, y + 1)
− qkVn(2, x + 1, y + 1)− αkVn(2, x + 1, y)− (1 − αk − qk)Vn(2, x + 2, y)

= αk−1(Vn(2, x + 1, y + 1)+ Vn(2, x, y)− Vn(2, x + 1, y)− Vn(2, x, y + 1))
+ qk(Vn(2, x + 1, y + 2)+ Vn(2, x + 2, y)− Vn(2, x + 2, y + 1)− Vn(2, x + 1, y + 1))
+ (1 − αk)(Vn(2, x + 2, y + 1)+ Vn(2, x + 1, y)− Vn(2, x + 1, y + 1)− Vn(2, x + 2, y)).

The termproportional toαk−1 is positive since Relation (10) holds for Vn, the termproportional to qk is positive since Relation
(13) holds for Vn, the term proportional to 1 − αk is positive since Relation (10) holds for Vn. Hence, Relation (10) is true for
An, for x = k − 1.
If k ≤ x < N − 1, then

An(2, x, y)+ An(2, x + 1, y + 1)− An(2, x, y + 1)− An(2, x + 1, y)
= qxVn(2, x, y + 1)+ αxVn(2, x, y)+ (1 − qx − αx)Vn(2, x + 1, y)

+ qx+1Vn(2, x + 1, y + 2)+ αx+1Vn(2, x + 1, y + 1)+ (1 − qx+1 − αx+1)Vn(2, x + 2, y + 1)
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− qxVn(2, x, y + 2)− αxVn(2, x, y + 1)− (1 − qx − αx)Vn(2, x + 1, y + 1)
− qx+1Vn(2, x + 1, y + 1)− αx+1Vn(2, x + 1, y)− (1 − qx+1 − αx+1)Vn(2, x + 2, y)

= qx(Vn(2, x, y + 1)+ Vn(2, x + 1, y + 2)− Vn(2, x, y + 2)− Vn(2, x + 1, y + 1))
+αx(Vn(2, x, y)+ Vn(2, x + 1, y + 1)− Vn(2, x, y + 1)− Vn(2, x + 1, y))
+ (1 − αx+1 − qx+1)(Vn(2, x + 1, y)+ Vn(2, x + 2, y + 1)− Vn(2, x + 1, y + 1)− Vn(2, x + 2, y))
+ (qx+1 − qx)(Vn(2, x + 1, y + 2)+ Vn(2, x + 1, y)− 2Vn(2, x + 1, y + 1)).

The terms proportional to qx, αx and 1 − qx+1 − αx+1 are positive since Relation (10) is true for Vn, the term proportional to
qx+1 − qx is also positive since Vn is convex in y. Hence Relation (10) is true for An, for k ≤ x < N − 1.
If x = N − 1, then

An(2, x, y)+ An(2, x + 1, y + 1)− An(2, x, y + 1)− An(2, x + 1, y)
= qxVn(2, x, y + 1)+ αxVn(2, x, y)+ (1 − qx − αx)Vn(2, x + 1, y)+ qxVn(2, x + 1, y + 2)

+ (1 − qx)Vn(2, x + 1, y + 1)− qxVn(2, x, y + 2)− αxVn(2, x, y + 1)
− (1 − qx − αx)Vn(2, x + 1, y + 1)− qxVn(2, x + 1, y + 1)− (1 − qx)Vn(2, x + 1, y)

= qx(Vn(2, x, y + 1)+ Vn(2, x + 1, y + 2)− Vn(2, x, y + 2)− Vn(2, x + 1, y + 1))
+αx(Vn(2, x, y)+ Vn(2, x + 1, y + 1)− Vn(2, x, y + 1)− Vn(2, x + 1, y)).

The terms proportional to qx and αx are positive since Relation (10) is true for Vn. Hence Relation (10) is true for An, for
x = N − 1.

– For Relation (12), we have for y ≥ 0,

An(1, 0, y)+ An(2, 0, y + 1)− An(2, 0, y)− An(1, 0, y + 1)
= Vn(2, 0, y)+ α0Vn(2, 0, y + 1)+ (1 − α0)Vn(2, 1, y + 1)− α0Vn(2, 0, y)

− (1 − α0)Vn(2, 1, y)− Vn(2, 0, y + 1)
= (1 − α0)(Vn(2, 0, y)+ Vn(2, 1, y + 1)− Vn(2, 1, y)− Vn(2, 0, y + 1)) ≥ 0,

since Relation (10) holds for Vn. Hence Relation (12) is true for An.
– For Relation (13), if x < k − 1 the transition rates are constant and the induction from Vn to An follows.

If x = k − 1, then

An(2, x, y + 2)+ An(2, x + 1, y)− An(2, x, y + 1)− An(2, x + 1, y + 1)
= αk−1Vn(2, x, y + 2)+ (1 − αk−1)Vn(2, x + 1, y + 2)+ qkVn(2, x + 1, y + 1)+ αkVn(2, x + 1, y)

+ (1 − αk − qk)Vn(2, x + 2, y)− αk−1Vn(2, x, y + 1)− (1 − αk−1)Vn(2, x + 1, y + 1)
− qkVn(2, x + 1, y + 2)− αkVn(2, x + 1, y + 1)− (1 − αk − qk)Vn(2, x + 2, y + 1)

= αk−1(Vn(2, x, y + 2)+ Vn(2, x + 1, y + 1)− Vn(2, x + 1, y + 2)− Vn(2, x, y + 1))
+αk(Vn(2, x + 1, y)+ Vn(2, x + 2, y + 1)− Vn(2, x + 2, y)− Vn(2, x + 1, y + 1))
+ qk(Vn(2, x + 1, y + 1)+ Vn(2, x + 2, y + 1)− Vn(2, x + 2, y)− Vn(2, x + 1, y + 2))
+ Vn(2, x + 2, y)+ Vn(2, x + 1, y + 2)− Vn(2, x + 1, y + 1)− Vn(2, x + 2, y + 1)

= (αk − αk−1)(Vn(2, x + 1, y)+ Vn(2, x + 1, y + 2)− 2Vn(2, x + 1, y + 1))
+αk−1(Vn(2, x, y + 2)+ Vn(2, x + 1, y)− Vn(2, x, y + 1)− Vn(2, x + 1, y + 1))
× (1 − qk − αk)(Vn(2, x + 2, y)+ Vn(2, x + 1, y + 2)− +Vn(2, x + 1, y + 1)− Vn(2, x + 2, y + 1)).

The term proportional to αk −αk−1 is positive since Vn is convex in y, the term proportional to αk−1 is positive since Relation
(13) is true for Vn, the term proportional to 1 − qk − αk is positive since Relation (13) is true for Vn. Hence Relation (13) is
true for An, for x = k − 1.
If k ≤ x < N − 1, then

An(2, x, y + 2)+ An(2, x + 1, y)− An(2, x, y + 1)− An(2, x + 1, y + 1)
= qxVn(2, x, y + 3)+ αxVn(2, x, y + 2)+ (1 − qx − αx)Vn(2, x + 1, y + 2)

+ qx+1Vn(2, x + 1, y + 1)+ αx+1Vn(2, x + 1, y)+ (1 − qx+1 − αx+1)Vn(2, x + 2, y)
− qxVn(2, x, y + 2)− αxVn(2, x, y + 1)− (1 − qx − αx)Vn(2, x + 1, y + 1)
− qx+1Vn(2, x + 1, y + 2)− αx+1Vn(2, x + 1, y + 1)− (1 − qx+1 − αx+1)Vn(2, x + 2, y + 1)

= qx(Vn(2, x, y + 3)+ Vn(2, x + 1, y + 1)− Vn(2, x + 1, y + 2)− Vn(2, x, y + 2))
+αx(Vn(2, x, y + 2)+ Vn(2, x + 1, y)− Vn(2, x + 1, y + 1)− Vn(2, x, y + 1))
+ (1 − αx+1 − qx+1)(Vn(2, x + 1, y + 2)+ Vn(2, x + 2, y)− Vn(2, x + 1, y + 1)− Vn(2, x + 2, y + 1))
+ (αx+1 − αx)(Vn(2, x + 1, y + 2)+ Vn(2, x + 1, y)− 2Vn(2, x + 1, y + 1)).
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The terms proportional to qx, αx and 1 − qx+1 − αx+1 are positive since Relation (13) is true for Vn, the term proportional to
αx+1 − αx is also positive since Vn is convex in y. Hence Relation (13) is true for An, for k ≤ x < N − 1.
If x = N − 1, then

An(2, x, y + 2)+ An(2, x + 1, y)− An(2, x, y + 1)− An(2, x + 1, y + 1)
= qxVn(2, x, y + 3)+ αxVn(2, x, y + 2)+ (1 − qx − αx)Vn(2, x + 1, y + 2)+ qxVn(2, x + 1, y + 1)

+ (1 − qx)Vn(2, x + 1, y)− qxVn(2, x, y + 2)− αxVn(2, x, y + 1)− (1 − qx − αx)Vn(2, x + 1, y + 1)
− qxVn(2, x + 1, y + 2)− (1 − qx)Vn(2, x + 1, y + 1)

= qx(Vn(2, x, y + 3)+ Vn(2, x + 1, y + 1)− Vn(2, x + 1, y + 2)− Vn(2, x, y + 2))
+αx(Vn(2, x, y + 2)+ Vn(2, x + 1, y)− Vn(2, x, y + 1)− Vn(2, x + 1, y + 1))
+ (1 − qx − αx)(Vn(2, x + 1, y + 2)+ Vn(2, x + 1, y)− 2Vn(2, x + 1, y + 1)).

The terms proportional to qx and αx are positive since Relation (13) is true for Vn, the term proportional to 1− qx −αx is also
positive since Vn is convex in y. Hence Relation (13) is true for An, for x = N − 1.

– For Relation (15), we have

An(1, 0, y + 2)+ An(2, 0, y)− An(1, 0, y + 1)− An(2, 0, y + 1)
= Vn(2, 0, y + 2)+ α0Vn(2, 0, y)+ (1 − α0)Vn(2, 1, y)− Vn(2, 0, y + 1)− α0Vn(2, 0, y + 1)

− (1 − α0)Vn(2, 1, y + 1)
= Vn(2, 0, y + 2)+ Vn(2, 1, y)− Vn(2, 0, y + 1)− Vn(2, 1, y + 1)+ α0(Vn(2, 0, y)+ Vn(2, 1, y + 1)

− Vn(2, 0, y + 1)− Vn(2, 1, y)).

The terms proportional to 1 is positive since Relation (13) is true for Vn, the term proportional to α0 is also positive since
Relation (10) is true for Vn. Hence Relation (15) is true for An.
Step 5. Assume that Vn ∈ F , for a given n ≥ 0. We now show that Dn ∈ F .

– For Relation (4), if x = 0, then

Dn(2, 1, y)− Dn(2, 0, y) = βVn(2, 0, y)+ βγ3 + 2µ(Vn(2, 0, y)− Vn(1, 0, y))
+ (1 − λ− β − 2µ)(Vn(2, 1, y)− Vn(2, 0, y))− βVn(2, 0, y) ≥ 0,

since Vn is increasing in x and Relation (6) is true for Vn.
If x > 0, then

Dn(2, x + 1, y)− Dn(2, x, y) = βx(Vn(2, x, y)− Vn(2, x − 1, y))+ βγ3 + βVn(2, x, y)
+ 2µ(Vn(2, x, y)− Vn(2, x − 1, y))+ (1 − λ− β(x + 1)− 2µ)(Vn(2, x + 1, y)− Vn(2, x, y))− βVn(2, x, y) ≥ 0,

since Vn is increasing in x. Hence Relation (4) is true for Dn.
– For Relation (5), we have

Dn(1, 0, y)− Dn(0, 0, y) = µVn(0, 0, y)+ (1 − λ− µ)(Vn(1, 0, y)− Vn(0, 0, y))− µVn(0, 0, y) ≥ 0.

Hence Relation (5) is true for Dn.
– For Relation (6), we have

Dn(2, 0, y)− Dn(1, 0, y) = µ(Vn(1, 0, y)− Vn(0, 0, y))+ µVn(1, 0, y)
+ (1 − λ− 2µ)(Vn(2, 0, y)− Vn(1, 0, y))− µVn(1, 0, y) ≥ 0.

Hence Relation (6) is true for Dn.
– For Relation (7), if x ≥ 0, then

Dn(2, x, y + 1)− Dn(2, x, y) = βx(Vn(2, x − 1, y + 1)− Vn(2, x − 1, y))
+ 2µ1(x=0)(Vn(0, 0, y + 1)− Vn(0, 0, y))+ (1 − λ− βx − 2µ)(Vn(2, x, y + 1)− Vn(2, x, y)) ≥ 0,

since Vn is increasing in y. Hence Relation (7) holds for Dn.
– Relations (8) and (9) are obviously also true for Dn.
– For Relation (10), if x, y ≥ 0, then

Dn(2, x, y)+ Dn(2, x + 1, y + 1)− Dn(2, x + 1, y)− Dn(2, x, y + 1)
= βx(Vn(2, x − 1, y)+ Vn(2, x, y + 1)− Vn(2, x, y)− Vn(2, x − 1, y + 1))+ β(Vn(2, x, y + 1)− Vn(2, x, y))

+ 2µ1(x=0)(Vn(1, 0, y)+ Vn(2, 0, y + 1)− Vn(2, 0, y)− Vn(1, 0, y + 1))
+ 2µ1(x>0)(Vn(2, x − 1, y)+ Vn(2, x, y + 1)− Vn(2, x, y)− Vn(2, x − 1, y + 1))
+ (1 − λ− β(x + 1)− 2µ)(Vn(2, x, y)+ Vn(2, x + 1, y + 1)− Vn(2, x + 1, y)− Vn(2, x, y + 1))
+β(Vn(2, x, y)− Vn(2, x, y + 1)) ≥ 0,

since Relations (10) and (12) are true for Vn.
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– For Relation (11), we have for y ≥ 0,

Dn(0, 0, y)+ Dn(1, 0, y + 1)− Dn(1, 0, y)− Dn(0, 0, y + 1)
= µ(Vn(0, 0, y + 1)− Vn(0, 0, y))+ (1 − λ− µ)(Vn(0, 0, y)+ Vn(1, 0, y + 1)− Vn(1, 0, y)− Vn(0, 0, y + 1))

+µ(Vn(0, 0, y)− Vn(0, 0, y + 1)) ≥ 0,

since Relation (11) is true for Vn.
– For Relation (12), we have for y ≥ 0,

Dn(1, 0, y)+ Dn(2, 0, y + 1)− Dn(2, 0, y)− Dn(1, 0, y + 1)
= µ(Vn(0, 0, y)− Vn(0, 0, y + 1))+ 2µ(Vn(1, 0, y + 1)− Vn(1, 0, y))

+ (1 − λ− 2µ)(Vn(1, 0, y)+ Vn(2, 0, y + 1)− Vn(2, 0, y)− Vn(1, 0, y + 1))
+µ(Vn(1, 0, y)− Vn(1, 0, y + 1))

≥ µ(Vn(0, 0, y)+ Vn(1, 0, y + 1)− Vn(1, 0, y)− Vn(0, 0, y + 1)).

The term proportional to µ is positive since Relation (11) is true for Vn. Therefore Relation (12) is true for Dn.
– For Relation (13), if x, y ≥ 0, then

Dn(2, x, y + 2)+ Dn(2, x + 1, y)− Dn(2, x, y + 1)− Dn(2, x + 1, y + 1)
= βx(Vn(2, x − 1, y + 2)+ Vn(2, x, y)− Vn(2, x − 1, y + 1)− Vn(2, x, y + 1))+ β(Vn(2, x, y)

− Vn(2, x, y + 1))+ 2µ1(x=0)(Vn(1, 0, y + 2)+ Vn(2, 0, y)− Vn(1, 0, y + 1)− Vn(2, 0, y + 1))
+ 2µ1(x>0)(Vn(2, x − 1, y + 2)+ Vn(2, x, y)− Vn(2, x − 1, y + 1)− Vn(2, x, y + 1))
+ (1 − λ− β(x + 1)− 2µ)(Vn(2, x, y + 2)+ Vn(2, x + 1, y)− Vn(2, x, y + 1)− Vn(2, x + 1, y + 1))
+β(Vn(2, x, y + 2)− Vn(2, x, y + 1)) ≥ β(Vn(2, x, y + 2)+ Vn(2, x, y)− 2Vn(2, x, y + 1)) ≥ 0,

since Relations (13) and (15) are true for Vn and Vn is convex in y. Therefore, Relation (13) is true for Dn.
– For Relation (14), we have for y ≥ 0,

Dn(0, 0, y + 2)+ Dn(1, 0, y)− Dn(0, 0, y + 1)− Dn(1, 0, y + 1)
= µ(Vn(0, 0, y)− Vn(0, 0, y + 1))+ (1 − λ− µ)(Vn(0, 0, y + 2)+ Vn(1, 0, y)− Vn(0, 0, y + 1)

− Vn(1, 0, y + 1))+ µ(Vn(0, 0, y + 2)− Vn(0, 0, y + 1))
≥ µ(Vn(0, 0, y + 2)+ Vn(0, 0, y)− 2Vn(0, 0, y + 1)) ≥ 0,

since Relation (14) is true for Vn and since Vn is convex in y. Hence, Relation (14) is true for Dn.
– For Relation (15), we have for y ≥ 0,

Dn(1, 0, y + 2)+ Dn(2, 0, y)− Dn(1, 0, y + 1)− Dn(2, 0, y + 1)
= µ(Vn(0, 0, y + 2)− Vn(0, 0, y + 1))+ 2µ(Vn(1, 0, y)− Vn(1, 0, y + 1))+ (1 − λ− 2µ)(Vn(1, 0, y + 2)

+ Vn(2, 0, y)− Vn(1, 0, y + 1)− Vn(2, 0, y + 1))+ µ(Vn(1, 0, y + 2)− Vn(1, 0, y + 1))
≥ µ(Vn(1, 0, y + 2)+ Vn(1, 0, y)− 2Vn(1, 0, y + 1))+ µ(Vn(1, 0, y)+ Vn(0, 0, y + 2)

− Vn(0, 0, y + 1)− Vn(1, 0, y + 1)).

The two terms proportional to µ are positive, the first one because Vn is convex in y and the second one because Relation
(14) holds for Vn. Therefore Relation (15) is true for Dn. The proof is completed. �

Appendix B. Proof of Proposition 2

To prove Proposition 2, we need to prove by induction on n (n ≥ 0) that, for x, y ≥ 0,

V ′

n(x, y)+ Vn(x + 1, y) ≥ Vn(x, y)+ V ′

n(x + 1, y), (27)

U ′

n(x, y)+ Un(x + 1, y) ≥ Un(x, y)+ U ′

n(x + 1, y), (28)

V ′

n(x, y + 1)+ Vn(x, y) ≥ V ′

n(x, y + 1)+ Vn(x, y), (29)

U ′

n(x, y + 1)+ Un(x, y) ≥ U ′

n(x, y + 1)+ Un(x, y), (30)

where Vn(x, y), Un(x, y) and V ′
n(x, y), U

′
n(x, y) are the value functions associated with the parameters γ1, γ2, γ3 and q for

x ≥ s + k, and the parameters γ ′

1, γ
′

2, γ
′

3 and q + q′ for x ≥ s + k, respectively. Summing up Relations (27) and (29) prove
that V ′

n(x, y + 1)+ Vn(x + 1, y) ≥ Vn(x, y + 1)+ V ′
n(x + 1, y). This implies that situation 1 requires more reservation than

situation 2.
We have U0 = V0 = U ′

0 = V ′

0 = 0. Thus, Relations (27)–(30) hold for n = 0.
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We first prove that Relation (28) implies Relation (27). Assume now that Relation (28) holds for a given n ≥ 0. Therefore,
U ′
n(x, y) + Un(x + 1, y) ≥ U ′

n(x + 1, y) + Un(x, y). We only consider the non-trivial cases where 0 ≤ x < s and y > 0. We
have

V ′

n(x + 1, y)+ Vn(x, y) ≤ U ′

n(x + 1, y)+ Un(x, y) for 0 ≤ x ≤ s − 1, y > 0, (31)

V ′

n(x + 1, y)+ Vn(x, y) ≤ U ′

n(x + 1, y)+ Un(x + 1, y − 1) for 0 ≤ x ≤ s − 1, y > 0, (32)

V ′

n(x + 1, y)+ Vn(x, y) ≤ U ′

n(x + 2, y − 1)+ Un(x + 1, y − 1) for 0 ≤ x ≤ s − 2, y > 0. (33)

If ‘‘keep’’ is the optimal action in states (x, y) and (x+1, y) for situations 2 and 1, respectively, then V ′
n(x, y)+Vn(x+1, y) =

U ′
n(x, y)+ Un(x + 1, y). Combining Eq. (31) with Relation (28) for Un proves Relation (27) for Vn.

If ‘‘serve’’ is the optimal action in states (x, y) and (x+1, y) for situations 2 and 1, respectively, then V ′
n(x, y)+Vn(x+1, y) =

U ′
n(x + 1, y − 1)+ Un(x + 2, y − 1). Combining Eq. (33) with Relation (28) for Un proves Relation (27) for Vn.

If ‘‘serve’’ is the optimal action in state (x, y) and ‘‘keep’’ is the optimal action in state (x + 1, y) for situations 2 and 1,
respectively, then V ′

n(x, y)+ Vn(x + 1, y) = U ′
n(x + 1, y − 1)+ Un(x + 1, y). Inequality (32) proves Relation (27) for Vn.

The case where ‘‘keep’’ would be the optimal action in state (x, y) and ‘‘serve’’ would be the optimal action in state (x+1, y)
for situations 2 and 1, respectively, is not considered because it is in contradiction with Relation (28) for Un.
We second prove that Relation (30) implies Relation (29). Assume now that Relation (30) holds for a given n ≥ 0. Again, we
only consider the non-trivial cases where 0 ≤ x < s and y > 0. We have

V ′

n(x, y)+ Vn(x, y + 1) ≤ U ′

n(x, y)+ Un(x, y + 1) for 0 ≤ x ≤ s − 1, y > 0, (34)

V ′

n(x, y)+ Vn(x, y + 1) ≤ U ′

n(x, y)+ Un(x + 1, y) for 0 ≤ x ≤ s − 1, y > 0, (35)

V ′

n(x, y)+ Vn(x, y + 1) ≤ U ′

n(x + 1, y − 1)+ Un(x + 1, y) for 0 ≤ x ≤ s − 1, y > 0. (36)

If ‘‘keep’’ is the optimal action in states (x, y) and (x, y+1) for situations 1 and 2, respectively, then Vn(x, y)+V ′
n(x, y+1) =

Un(x, y)+ U ′
n(x, y + 1). Combining Eq. (34) with Relation (30) for Un proves Relation (29) for Vn.

If ‘‘serve’’ is the optimal action in states (x, y) and (x, y+1) for situations 1 and 2, respectively, then Vn(x, y)+V ′
n(x, y+1) =

Un(x + 1, y − 1)+ Un(x + 1, y). Combining Eq. (36) with Relation (30) for Un proves Relation (29) for Vn.
If ‘‘keep’’ is the optimal action in state (x, y) and ‘‘serve’’ is the optimal action in state (x, y + 1) for situations 1 and 2,
respectively, then Vn(x, y)+ V ′

n(x, y + 1) = Un(x, y)+ U ′
n(x + 1, y). Inequality (35) proves Relation (29) for Vn.

The case where ‘‘serve’’ would be the optimal action in state (x, y) and ‘‘keep’’ would be the optimal action in state (x, y+1)
for situations 1 and 2, respectively, is not considered because it is in contradiction with Relation (30) for Un.
We now prove that Relations (27) and (29) for Vn imply Relation (28) and (30) for Un+1.
The proof of Relation (27) for the departure term can be easily done since the terms are identical in situations 1 and 2 except
for the cost parameter related to the abandonment. This implies a positive difference β(γ3−γ ′

3)((x+1−s)+ −(x−s)+) ≥ 0
since γ3 ≥ γ ′

3. We therefore only focus on the cost and arrival terms. We denote by G(x, y) and G′(x, y) the cost terms in
situations 1 and 2, respectively and A(x, y) and A′(x, y) the arrival terms in situations 1 and 2, respectively. We have

G′(x, y)+ G(x + 1, y)− G(x, y)− G′(x + 1, y) = (γ1 − γ ′

1)((x + 1 − s)+ − (x − s)+) ≥ 0,

since γ1 ≥ γ ′

1 and

G(x, y)+ G′(x, y + 1)− G′(x, y)− G(x, y + 1) = γ ′

2 − γ2 ≥ 0,

since γ ′

2 ≥ γ2.
For the arrival termwemay write for x ≥ s+ k (the terms where x < s+ k are simplifications of this case and are therefore
omitted)

A′

n(x, y)+ An(x + 1, y)− An(x, y)− A′

n(x + 1, y)
= αx(V ′

n(x, y)+ Vn(x + 1, y)− Vn(x, y)− V ′

n(x + 1, y))+ q(V ′

n(x, y + 1)+ Vn(x + 1, y + 1)
− Vn(x, y + 1)− V ′

n(x + 1, y + 1))+ (1 − αx+1 − q)(V ′

n(x + 1, y)+ Vn(x + 2, y)− Vn(x + 1, y)
− V ′

n(x + 2, y))+ q′(V ′

n(x + 2, y)− V ′

n(x + 1, y + 1)+ V ′

n(x, y + 1)− V ′

n(x + 1, y))+ (γ3 − γ ′

3)(αx+1 − αx).

The terms proportional to αx, q and 1− αx+1 − q are positive since Relation (27) is true for Vn. The term proportional to q′ is
positive since this relation defines that the optimal policy in situation 2 is of switch type. The last term is also positive since
γ3 ≥ γ ′

3. Therefore, Relation (28) is true for Un+1.
For the arrival term we also may write for x ≥ s + k (the terms where x < s + k are simplifications of this case and are
therefore omitted)

A′

n(x, y + 1)+ An(x, y)− An(x, y + 1)− A′

n(x, y)
= αx(V ′

n(x, y + 1)+ Vn(x, y)− Vn(x, y + 1)− V ′

n(x, y))+ q(V ′

n(x, y + 2)+ Vn(x, y + 1)
− Vn(x, y + 2)− V ′

n(x, y + 1))+ (1 − αx − q)(V ′

n(x + 1, y + 1)+ Vn(x + 1, y)− Vn(x + 1, y + 1)
− V ′

n(x + 1, y))+ q′(V ′

n(x, y + 2)− V ′

n(x + 1, y + 1)+ V ′

n(x + 1, y)− V ′

n(x, y + 1)).



30 B. Legros et al. / Performance Evaluation 95 (2016) 1–40

The terms proportional to αx, q and 1 − αx − q are positive since Relation (29) is true for Vn. The term proportional to q′ is
positive since this relation defines that the optimal policy in situation 2 is of switch type. Therefore, Relation (30) is true for
Un+1. This finishes the proof of the proposition. �

Appendix C. Performance analysis for Model C

We provide here the details for the steps of the performance evaluation method for Model C.
Step 1. The stationary probabilities are determined by the following set of equilibrium equations. For y = 0, we may write

λpx,0 = (x + 1)µpx+1,0, for 0 ≤ x < y0, (37)
λpy0,0 = (y0 + 1)µpy0+1,0 + y0µpy0,1, for x = y0, (38)
(λ+ xµ)px,0 = (x + 1)µpx+1,0 + λpx−1,0, for y0 < x < s, (39)
((1 − α)λ+ sµ)ps,0 = sµps+1,0 + λps−1,0, for x = s, (40)
(λ(1 − α)+ sµ)px,0 = sµpx+1,0 + λ(1 − α)px−1,0, for s < x ≤ s + k, (41)
(λ(1 − α)+ sµ)px,0 = sµpx+1,0 + (1 − q − α)λpx−1,0, for x > s + k. (42)

For y = yi − 1 and 1 ≤ i ≤ s − y0, we have

(λ+ (y0 + i − 1)µ)py0+i−1,yi−1 = (y0 + i)µpy0+i,yi−1, for x = y0 + i − 1, (43)
(λ+ (y0 + i)µ)py0+i,yi−1 = λpy0+i−1,yi−1 + (y0 + i)µpy0+i,yi + min(y0 + i + 1, s)µpy0+i+1,yi−1, for x = y0 + i.

(44)

For 0 < y < y1 − 1, yi ≤ y < yi+1 − 1 and 1 ≤ i < s − y0, we get

(λ+ (y0 + i)µ)py0+i,y = (y0 + i)µpy0+i,y+1 + (y0 + i + 1)µpy0+i+1,y, for x = y0 + i. (45)

For 0 < y ≤ y1 − 1 and i = 0 or yi ≤ y ≤ yi+1 − 1 and 1 ≤ i < s − y0, we have

(λ+ xµ)px,y = (x + 1)µpx+1,y + λpx−1,y, for y0 + i < x < s, (46)
(λ(1 − α)+ sµ)ps,y = sµps+1,y + λps−1,y, for x = s, (47)
(λ(1 − α)+ sµ)px,y = sµpx+1,y + λ(1 − α)px−1,y, for s < x < s + k, (48)
(λ(1 − α)+ sµ)ps+k,y = sµps+k+1,y + λ(1 − α)ps+k−1,y + qλps+k,y−1, for x = s + k,
(λ(1 − α)+ sµ)px,y = sµpx+1,y + (1 − q − α)λpx−1,y + qλpx,y−1, for x > s + k. (49)

Finally, for y ≥ ys−y0 , we may write

(λ(1 − α)+ sµ)ps,y = sµps,y+1 + sµps+1,y, for x = s, (50)
(λ(1 − α)+ sµ)px,y = sµpx+1,y + λ(1 − α)px−1,y, for s < x < s + k,
(λ(1 − α)+ sµ)ps+k,y = sµps+k+1,y + λ(1 − α)ps+k−1,y + qλps+k,y−1, for x = s + k,
(λ(1 − α)+ sµ)px,y = sµpx+1,y + (1 − q − α)λpx−1,y + qλpx,y−1, for x > s + k. (51)

Step 2. We denote by a the offered load, a =
λ
µ
. Lemma 1 simplifies the expressions of px,y, for x ≤ s + k and y ≥ 0, by

writing them as a function of only two state probabilities from the row y in the Markov chain as given in Fig. 7.

Lemma 1. The following holds.
1. If y = yi − 1 for 1 ≤ i ≤ s − y0, then

py0+i,yi−1 =


a

y0 + i
+

y0 + i − 1
y0 + i


py0+i−1,yi−1.

2. For 1 ≤ i < s − y0, yi − 1 ≤ y < yi+1 − 1 and 2 ≤ x ≤ s − y0 − i or i = 0, 0 ≤ y < y1 − 1 and 2 ≤ x ≤ s − y0, we have

py0+i+x,y =
1

(y0 + i + x)!


(y0 + i + 1)py0+i+1,y

x−1
j=0

(y0 + i + j)!ax−j−1
− apy0+i,y

x−1
j=1

(y0 + i + j)!ax−j−1


.

3. For 0 ≤ y < ys−y0 − 1, we have

ps+1,y =


1 +

a(1 − α)

s


ps,y −

a
s
ps−1,y.

4. For y ≥ 0 and 0 ≤ x ≤ k, we have

ps+x,y =


1 −

a(1 − α)

s

−1 
ps+1,y


1 −


a(1 − α)

s

x
− ps,y


a(1 − α)

s
−


a(1 − α)

s

x
.
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Proof. The proof of the first statement is straightforward. If y = yi − 1 for 1 ≤ i ≤ s − y0, then Eq. (43) leads to
py0+i,yi−1 = ( a

y0+i +
y0+i−1
y0+i )py0+i−1,yi−1.

We now prove the second statement by induction on x. For 1 ≤ i < s− y0, yi − 1 ≤ y < yi+1 − 1 and 2 ≤ x ≤ s− y0 − i
or i = 0, 0 ≤ y < y1 − 1 and 2 ≤ x ≤ s − y0, let us define the property P(x) by

P(x) : py0+i+x,y =
1

(y0 + i + x)!


(y0 + i + 1)py0+i+1,y

x−1
j=0

(y0 + i + j)!ax−j−1
− apy0+i,y

x−1
j=1

(y0 + i + j)!ax−j−1


,

for 0 ≤ i < s − y0 and 2 ≤ x < s − y0 − i − 1.
Combining x = y0 + i + 1 and Eq. (46), and combining x = y0 + 1 and Eq. (39) prove that P(2) is true.

Assume that P(x) and P(x+1) are true, and let us prove that P(x+2) is also true, for 0 ≤ i < s−y0 and 2 ≤ x < s−y0− i−1.
We may write

py0+i+x,y =
1

(y0 + i + x)!


(y0 + i + 1)py0+i+1,y

x−1
j=0

(y0 + i + j)!ax−j−1
− apy0+i,y

x−1
j=1

(y0 + i + j)!ax−j−1


,

and

py0+i+x+1,y =
1

(y0 + i + x + 1)!


(y0 + i + 1)py0+i+1,y

x
j=0

(y0 + i + j)!ax−j
− apy0+i,y

x
j=1

(y0 + i + j)!ax−j


.

Eq. (46) for 1 ≤ i < s − y0 and 2 ≤ x < s − y0 − i − 1 or Eq. (39) for i = 0 and 2 ≤ x < s − y0 − 1 are equivalent to

py0+i+x+2,y =
a + y0 + i + x + 1
y0 + i + x + 2

py0+i+x+1,y −
a

y0 + i + x + 2
py0+i+x,y.

We thus obtain, for 0 ≤ i < s − y0 and 2 ≤ x < s − y0 − i − 1,

py0+i+x+2,y

=
a + y0 + i + x + 1
y0 + i + x + 2


1

(y0 + i + x + 1)!


(y0 + i + 1)py0+i+1,y

x
j=0

(y0 + i + j)!ax−j
− apy0+i,y

x
j=1

(y0 + i + j)!ax−j



−
a

y0 + i + x + 2


1

(y0 + i + x)!


(y0 + i + 1)py0+i+1,y

x−1
j=0

(y0 + i + j)!ax−j−1
− apy0+i,y

x−1
j=1

(y0 + i + j)!ax−j−1



=
(y0 + i + 1)py0+i+1,y

(y0 + i + x + 2)!


(a + y0 + i + x + 1)

x
j=0

(y0 + i + j)!ax−j
− a(y0 + i + x + 1)

x−1
j=0

(y0 + i + j)!ax−j−1



−
apy0+i,y

(y0 + i + x + 2)!


(a + y0 + i + x + 1)

x
j=1

(y0 + i + j)!ax−j
− a(y0 + i + x + 1)

x−1
j=1

(y0 + i + j)!ax−j−1



=
1

(y0 + i + x + 2)!


(y0 + i + 1)py0+i+1,y

x+1
j=0

(y0 + i + j)!ax−j+1
− apy0+i,y

x+1
j=1

(y0 + i + j)!ax−j+1


.

We next deduce that P(x+ 2) is also true for 0 ≤ i < s− y0 and 2 ≤ x < s− y0 − i− 1. So, the property P(x) is true, which
finishes the proof of the second statement.

The third statement immediately follows from Eqs. (40) and (47).
Let us now prove the fourth statement. The corresponding homogeneous equation to Eqs. (41) and (48) is

sµz2 − (λ(1 − α)+ sµ)z + λ(1 − α) = 0,

with z as a variable, for z ∈ C. It has two solutions, z = 1 and z =
a(1−α)

s . Thus for y ≥ 0 and 0 ≤ x ≤ k,

ps+x,y = α + β


a(1−α)
s

x
with ps,y = α + β and ps+1,y = α + β a(1−α)

s . Finally, for y ≥ 0 and 0 ≤ x ≤ k, we obtain

ps+x,y =


1 −

a(1 − α)

s

−1 
ps+1,y


1 −


a(1 − α)

s

x
− ps,y


a(1 − α)

s
−


a(1 − α)

s

x
.

This finishes the proof of the fourth statement, and that of the lemma. �

Step 3. We show in Lemma 2 how px,y, for x ≥ s + k and y ≥ 0, can be computed as a function of ps+k,0, ps+k,1, . . . , ps+k,y.
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Lemma 2. The solution of Eqs. (42), (49) and (51) is given by

px+s+k,y =


y

j=0

ay,jxj

zx, (52)

for x ≥ 0, where

z =
1
2

1 +
a(1 − α)

s
−


1 +

a(1 − α)

s

2

−
4(1 − q − α)a

s

 ,
and the constants ay,j for y ≥ 0 and 0 ≤ j ≤ y are given by

ay,0 = ps+k,y, (53)

for y ≥ 0,

ay,y =
a0,0
y!


qλz

−sµz2 + (1 − q − α)λ

y

,

for y > 0, and

ay,j+1 =

(−sµz2 + (1 − q − α)λ)(j + 1)

−1


y

i=j+2

ay,i


i
j

 
sµz2 + (−1)i+j(1 − q − α)λ


+ qλzay−1,j


, (54)

for 0 ≤ j < y − 1 and y > 1.

Proof. Consider the system of equations given by Eqs. (42), (49) and (51). This system can be solved analytically using
standard results from the theory of linear difference equations. Consider the corresponding homogeneous equation to
Eqs. (42), (49) and (51). We have

sµz2 − (λ(1 − α)+ sµ)z + (1 − q − α)λ = 0, (55)

with z as a variable, for z ∈ C. It has two solutions denoted by z and z ′ and are given by

z =
1
2

1 +
a(1 − α)

s
−


1 +

a(1 − α)

s

2

−
4(1 − q − α)a

s

 ,
and

z ′
=

1
2

1 +
a(1 − α)

s
+


1 +

a(1 − α)

s

2

−
4(1 − q − α)a

s

 .
We next provide the intervals where z and z ′ are ranging. We have 0 ≤ z < 1 and z ′

≥ 1. Let us first prove that z ′
≥ 1.

Since z ′ increases in q, we have

z ′
≥

1
2

1 +
a(1 − α)

s
+


1 +

a(1 − α)

s

2

−
4a(1 − α)

s

 =
1
2

1 +
a(1 − α)

s
+


1 −

a(1 − α)

s

2
 = 1.

In what follows, we prove that 0 ≤ z < 1. Since z decreases in q,

z ≤
1
2

1 +
a(1 − α)

s
−


1 +

a(1 − α)

s

2

−
4a(1 − α)

s


=

1
2

1 +
a(1 − α)

s
−


1 −

a(1 − α)

s

2
 =

a(1 − α)

s
< 1.

From Eq. (55), we may write sµzz ′
= (1 − q)λ. Since λ ≥ 0, 0 ≤ q ≤ 1 and z ′ > 1 > 0, we obtain z ≥ 0.

Because of the last term in the right hand side of Eqs. (49) and (51), the stationary probabilities px+s+k,y, for x ≥ 0 and y ≥ 0,
can be written as a sum of two polynomials multiplied by zx and z ′x, respectively. Since z ′ > 1, the convergence of the



B. Legros et al. / Performance Evaluation 95 (2016) 1–40 33

stationary probabilities forces the polynomial that is multiplied by z ′x to be equal to zero. We therefore obtain Eq. (52), for
x ≥ 0 and y ≥ 0, that is,

px+s+k,y =


y

j=0

ay,jxj

zx,

with ay,j ∈ R for y ≥ 0 and 0 ≤ j ≤ y. In what follows, we compute the parameters ay,j, for y ≥ 0 and 0 ≤ j ≤ y, as a
function of ps+k,y, for y ≥ 0. It is straightforward to obtain Eq. (53). Using Eqs. (49), (51) and (52), we have

(λ(1 − α)+ sµ)


y

j=0

ay,jxj

zx = sµ


y

j=0

ay,j(x + 1)j

zx+1

+ (1 − q − α)λ


y

j=0

ay,j(x − 1)j

zx−1

+ qλ


y−1
j=0

ay−1,jxj

zx, (56)

for x, y > 0. Since
y

j=0

ay,j(x + 1)j =

y
j=0


y
i=j

ay,i


i
j


xj,

and
y

j=0

ay,j(x − 1)j =

y
j=0


y
i=j

(−1)iay,i


i
j


(−1)jxj.

Eq. (56) leads to

(λ(1 − α)+ sµ)ay,y−1z = sµz2(ay,y−1 + ay,yy)+ (1 − q − α)λ(ay,y−1 − ay,yy)+ qλzay−1,y−1, (57)

for y > 0. Since z is a root of Eq. (55), Eq. (57) can be rewritten as

0 = sµz2ay,yy − (1 − q − α)λay,yy + qλzay−1,y−1,

for y > 0. This implies

ay,y = ay−1,y−1
qλz

(−sµz2 + (1 − q − α)λ)y
,

for y > 0. It thus follows that

ay,y =
a0,0
y!


qλz

−sµz2 + (1 − q − α)λ

y

,

for y > 0. For 0 ≤ j < y − 1 and y > 1, Eq. (56) also leads to

(λ(1 − α)+ sµ)ay,jz = sµz2


y
i=j

ay,i


i
j


+ (1 − q − α)λ


y
i=j

(−1)iay,i


i
j


(−1)j + qλzay−1,j. (58)

Since z is a root of Eq. (55), Eq. (58) can be rewritten as

0 = ay,j+1(j + 1)(sµz2 − (1 − q − α)λ)+

y
i=j+2

ay,i


i
j

 
sµz2 + (−1)i+j(1 − q − α)λ


+ qλzay−1,j,

for 0 ≤ j < y − 1 and y > 1. Finally, this leads to Eq. (54).
We then compute ay,j, for y ≥ 0 and 0 ≤ j ≤ y, as a function of ps+k,y, for y ≥ 0. This finishes the proof of the lemma. �

Step 4. Here, we evaluate all stationary probabilities for x ≥ 0 and y = 0 as a function of p0,0. Using Eq. (37), we have

px,0 =
ax

x!
p0,0, (59)

for 0 ≤ x ≤ y0. Using the second statement of Lemma 1, we obtain

py0+x,0 =
1

(y0 + x)!


(y0 + 1)py0+1,0

x−1
j=0

(y0 + j)!ax−j−1
− apy0,0

x−1
j=1

(y0 + j)!ax−j−1


, (60)
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for 2 ≤ x ≤ s − y0. From the second and third statements of Lemma 1, we may write

ps+x,0 =


1 −

a(1 − α)

s

−1

ps,0


1 −


a(1 − α)

s

x+1


− ps−1,0
a
s


1 −


a(1 − α)

s

x
, (61)

for 0 ≤ x ≤ k. Using now Eqs. (60) and (61), we obtain

ps+k,0 =
(y0 + 1)py0+1,0

s!

1 −

a(1−α)
s

 a(1 − α)

s

k 
1 −

a
s

 s−y0−2
j=0

(y0 + j)!as−y0−j−1
+ (s − 1)!


1 −


a(1 − α)

s

k+1


−
apy0,0

s!

1 −

a(1−α)
s

 a(1 − α)

s

k 
1 −

a
s

 s−y0−2
j=1

(y0 + j)!as−y0−j−1
+ (s − 1)!


1 −


a(1 − α)

s

k+1


.

(62)

Next, combining Eq. (38) and y0µpy0,1 = qλ


∞

x=0 ps+k+x,0 provides a relation between py0,0 and py0+1,0. FromEqs. (38)–(42),
we have

λpy0,0 − (y0 + 1)µpy0+1,0 = qλ
ps+k,0

1 − z
.

Combining the previous equation and Eqs. (59) and (62) implies

py0+1,0 =
a

y0 + 1

1 +
qa

(1−a(1−α)/s)(1−z)s!


a(1−α)

s

k 
1 −

a
s

 s−y0−2
j=1

(y0 + j)!as−y0−j−1
+ (s − 1)!


1 −


a(1−α)

s

k+1


1 +
qa

(1−a(1−α)/s)(1−z)s!


a(1−α)

s

k 
1 −

a
s

 s−y0−2
j=0

(y0 + j)!as−y0−j−1 + (s − 1)!

1 −


a(1−α)

s

k+1
 ay0

y0!
p0,0.

(63)

Using Eqs. (38) and (63), we also obtain

py0,1 =
p0,0
1 − z

q a
y0

as
s!


a(1−α)

s

k
1 +

qa
(1−a(1−α)/s)(1−z)s!


a(1−α)

s

k 
1 −

a
s

 s−y0−2
j=0

(y0 + j)!as−y0−j−1 + (s − 1)!

1 −


a(1−α)

s

k+1
 .

Using Lemmas 1 and 2 together with Eqs. (63) and (59), we thus have closed-form expressions for the stationary
probabilities px,0 for x ≥ 0 and py0,1 as function of p0,0.
Step 5.Wepropose in this step amethod to compute the stationary probabilities of a given row as a function of the stationary
probabilities in the previous rows of the Markov chain. Consider y ≥ 0, and suppose that the stationary probabilities of
rows 0, 1, . . . , y are known in the Markov chain as a function of p0,0. If for a given i (i ∈ {1, . . . , s − y0 − 1}) we have
yi ≤ y + 1 < yi+1 − 1 or 0 < y + 1 < y1 − 1, then (y0 + i)µpy0+i,y+1 = qλ


∞

x=0 ps+k+x,y, and if y + 1 ≥ ys−y0 then
sµps,y+1 = qλ


∞

x=0 ps+k+x,y. Consequently, the first stationary probability of row y + 1 is also known as a function of p0,0.
Observe that using Eq. (52) for y ≥ 0, we have

∞
x=0

ps+k+x,y =

∞
x=0


y

j=0

ay,jxj

zx =

y
j=0

ay,j


∞
x=0

xjzx

.

For 0 ≤ j ≤ y, and x, y ≥ 0, we define the function fj in the variable t by fj(t) =


∞

x=0 x
jtx with t ∈ [0, 1). The function fj(t)

is given by the recursive relation fn+1(t) = t (fn(t))′ for n ≥ 0 and f0(t) =
1

1−t with t ∈ [0, 1) [28]. Thus we can derive the
infinite sum


∞

x=0 ps+k+x,y, for 0 ≤ j ≤ y, and x, y ≥ 0, through a finite number of calculations. �
We next distinguish three cases.

– Case 1: If for a given i (i ∈ {1, . . . , s − y0}) y + 1 = yi − 1, then using the first statement of Lemma 1, the second
stationary probability of row y + 1 (py0+i,yi−1) is also known as a function of p0,0. Using Lemma 1 we evaluate px,yi−1
for y0 + i − 1 ≤ x ≤ s + k as a function of p0,0 and py0+i+1,yi−1. Using Lemma 2 we evaluate ps+k+x,yi−1 for x ≥ 0
as a function of ps+k,0, ps+k,1, . . . , ps+k,yi−1. Since the stationary probabilities of rows 0, 1, . . . , yi − 2 are known as a
function of p0,0 then we evaluate ps+k+x,yi−1 for x ≥ 0 as a function of p0,0 and py0+i+1,yi−1. Using Eq. (44), we obtain
(y0 + i)µpy0+i,yi = (λ(1 − 1y0+i≥sα)+ (y0 + i)µ)py0+i,yi−1 − λpy0+i−1,yi−1 − min(y0 + i + 1, s)µpy0+i+1,yi−1. Moreover, we
have (y0 + i)µpy0+i,yi = qλ


∞

x=0 ps+k+x,yi−1. Thus the equation (λ(1 − 1y0+i≥sα) + (y0 + i)µ)py0+i,yi−1 − λpy0+i−1,yi−1 −

min(y0 + i + 1, s)µpy0+i+1,yi−1 = qλ


∞

x=0 ps+k+x,yi−1 provides a relation between p0,0 and py0+i+1,yi−1. As a consequence
all probabilities of row y + 1 can be derived as a function of p0,0.
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– Case 2: If for a given i (i ∈ {1, . . . , s−y0−1}) we have yi ≤ y+1 < yi+1−1 or 0 < y+1 < y1−1, then using Lemma 1we
evaluate px,y+1 for y0 + i ≤ x ≤ s + k as a function of p0,0 and py0+i+1,y+1. Using Lemma 2, we evaluate ps+k+x,y+1 for x ≥ 0
as a function of ps+k,0, ps+k,1, . . . , ps+k,y+1. Since the stationary probabilities of rows 0, 1, . . . , y are known as a function of
p0,0 then we evaluate ps+k+x,y+1 for x ≥ 0 as a function of p0,0 and py0+i+1,y+1. Using Eq. (45) we obtain (y0 + i)µpy0+i,y+2 =

(λ(1 − 1y0+i≥sα)+ (y0 + i)µ)py0+i,y+1 − (y0 + i + 1)µpy0+i+1,y+1. Moreover we have sµps,y+2 = qλ


∞

x=0 ps+k+x,y+1. Thus
the equation (λ(1 − 1y0+i≥sα) + (y0 + i)µ)py0+i,y+1 − (y0 + i + 1)µpy0+i+1,y+1 = qλ


∞

x=0 ps+k+x,y+1 provides a relation
between p0,0 and py0+i+1,y+1. As a consequence all probabilities of row y + 1 can be derived as a function of p0,0.
– Case 3: If y + 1 ≥ ys−y0 , then using Lemma 1 we evaluate px,y+1 for s ≤ x ≤ s + k as a function of p0,0 and
ps+1,y+1. In all cases using Lemma 2 we evaluate ps+k+x,y+1 for x ≥ 0 as a function of ps+k,0, ps+k,1, . . . , ps+k,y+1. Since
the stationary probabilities of rows 0, 1, . . . , y are known as a function of p0,0, then we evaluate ps+k+x,y+1 for x ≥ 0 as a
function of p0,0 and ps+1,y+1. Using Eq. (50), we obtain sµps,y+2 = (λ(1 − α)+ sµ)ps,y+1 − sµps+1,y+1. Moreover, we have
(y0+i)µpy0+i,yi = qλ


∞

x=0 ps+k+x,yi−1. Thus, the equation (λ(1−α)+sµ)ps,y+1−sµps+1,y+1 = qλ


∞

x=0 ps+k+x,yi−1 provides
a relation between p0,0 and ps+1,y+1. As a consequence all probabilities of row y + 1 can be derived as a function of p0,0.
Step 6. We now evaluate p0,0. In what follows we prove that the overall sum of the probabilities can be evaluated after
a finite number of calculations. We define the quantity Px as Px =


∞

y=0 px,y for x ≥ s. For s ≤ x < s + k we have

λ(1 − α)Px = sµPx+1, then Ps+x =


a(1−α)

s

x
Ps, for 0 ≤ x ≤ k. For x ≥ s + k we have (1 − q − α)λPx = sµPx+1,

then Ps+k+x =


a(1−α)

s

k 
(1−q−α)a

s

x
Ps, for x ≥ 0. Using now y0µ

y1−1
y=1 py0,y + (y0 + 1)µ

y2−1
y=y1

py0+1,y + · · · + (s −

1)µ
ys−y0−1

y=ys−y0−1 ps−1,y + sµ

Ps −

ys−y0−1
y=0 ps,y


= λq


∞

x=0 Ps+k+x, and


∞

x=0 Ps+k+x = Ps


a(1−α)

s

k
1− a(1−q−α)

s
, we therefore obtain

Ps =


1 − q

a
s


a(1 − α)

s

k 1

1 −
a(1−q−α)

s

−1

×

ys−y0−1
y=0

ps,y −
y0
s

y1−1
y=1

py0,y −
y0 + 1

s

y2−1
y=y1

py0+1,y − · · · −
s − 1
s

ys−y0−1
y=ys−y0−1

ps−1,y

 .
Thus the quantity Ps can be computed after a finite number of calculations as a function of p0,0. Since


∞

x=s Px =

Ps
k−1

x=0


a(1−α)

s

x
+ Ps (a(1−α))

k

sk
1

1− a(1−q−α)
s

, the overall sum of the probabilities can also be evaluated after a finite number

of calculations. Using the fact that all probabilities sum up to one, we obtain p0,0. This finishes the characterization of all
stationary probabilities.
Step 7. We now use the stationary probabilities to derive the system performance measures. The proportion of customers
who ask for a callback, ψ , is given by

ψ = q
∞

x=s+k

Px = Ps
q


a(1−α)
s

k
1 −

a(1−q−α)
s

.

The proportion of customers who balk the system, Pb, is given by

Pb = α

∞
x=s

Px = αPs


k−1
x=0


a(1 − α)

s

x

+
(a(1 − α))k

sk
1

1 −
a(1−q−α)

s


.

Applying the Little law leads to λ(1 − ψ − Pb)E(W1) =


∞

x=0 xPs+x. Therefore,

E(W1) =
Ps

λ(1 − ψ − Pb)

a(1 − α)

s

 1 − k


a(1−α)
s

k−1
+ (k − 1)


a(1−α)

s

k

1 −

a(1−α)
s

2
+


a(1 − α)

s

k (1−q−α)a
s + k


1 −

(1−q−α)a
s



1 −

(1−q−α)a
s

2
 .

Again, applying the Little law implies

E(W2) =
1
λψ

y1−1
y=1

ypy0,y +

y2−1
y=1

ypy0+1,y + · · · +

ys−y0−1
y=1

yps−1,y +

∞
y=1

∞
x=s

ypx,y

 .
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Using now the following relation

ψE(W2)+ (1 − ψ − Pb)E(W1) = E(W ),

we obtain E(W ). This finishes the characterization of the performance measures in the general case.

Appendix D. Highest reservation and non-idling cases

We simplify here the expressions given in Corollary 2. We focus on the multi-server setting for the special cases y0 = 1
(highest reservation) and y0 = s (non-idling). These results are for example useful for the numerical computations in Table 2.
We first consider the highest reservation policy with y0 = 1. We have

Ψ =

q


a(1−α)
s

k
as
s!

1 −
a(1−q−α)

s

p0,0

1 − q as
s!


a(1−α)

s

k
1

1− a(1−q−α)
s

,

Pb =

α as
s! p0,0


1−

a(1−α)

s

k
1− a(1−α)

s
+


a(1−α)

s

k
1− a(1−q−α)

s


1 − q as

s!


a(1−α)

s

k
1

1− a(1−q−α)
s

,

E(W1) =

as
s!

λ(1 − Ψ − Pb)

p0,0


k−1
x=0

x


a(1−α)
s

x
+


a(1−α)

s

k  k

1− a(1−q−α)

s


+

a(1−q−α)
s

1− a(1−q−α)
s

2


1 − q as
s!


a(1−α)

s

k
1

1− a(1−q−α)
s

,

with

p0,0 =

1 +


s−2
x=0

ax+1

(x+1)! +
as
s!

k−1
x=0

(a(1−α))x

sx +
as
s!
(a(1−α))k

sk
1

1− a(1−q−α)
s


1 − q as

s!
(a(1−α))k

sk
1

1− a(1−q−α)
s


−1

.

We now consider the non-idling policy with y0 = s. We have

Ψ =

q


a(1−α)
s

k
as
s! p0,0

1 −
a(1−q−α)

s − q a
s


a(1−α)

s

k ,
Pb =

α as
s! p0,0

1 −
(a(1−α))

s

,

E(W1) =
1
λ

as
s! p0,0


a(1−α)

s

 1−k

a(1−α)

s

k−1
+(k−1)


a(1−α)

s

k

1− a(1−α)

s

2 +


a(1−α)

s

k (1−q−α)a
s +k


1− (1−q−α)a

s



1− (1−q−α)a

s

2



1 −

q a
s


a(1−α)

s

k
1− a(1−q−α)

s


(1 − Ψ − Pb)

,

with

p0,0 =


s−1
x=0

ax

x!
+

as
s!

1 −
(a(1−α))

s

−1

.

Using the fact that the overall system is equivalent to an M/M/s queue with balking, we can also compute E(W2) in the
non-idling case as follows.

E(W ) = Ψ E(W2)+ (1 − Ψ − Pb)E(W1)

=
p0,0 as

s!

λ

a(1−α)
s

1 −
a(1−α)

s

2 .
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Appendix E. Proof of Proposition 4

Since E(W1) and E(W2) are both increasing in k, we choose the optimal value of k which is k = 0. We rewrite the
performance measures as functions of the Erlang Delay Loss Formulae, Cs and the parameter ρ =

λ
sµ . Under the stability

constraint λ(1 − α) < sµ, we have

Cs =
1

1 + s!
s−1
x=0

(sρ)x−s

x! (1 − ρ(1 − α))

, Ψ = qCs, Pb = αCs, E(W1) =
1
λq

Ψ


(1−q−α)ρ

1−(1−q−α)ρ


1 − Ψ − Pb

,

and

E(W ) =
Ψ ρ(1 − α)

λq (1 − ρ(1 − α))
.

Harel [29] shows that the Erlang loss formulae is strictly decreasing in s. In particular, he shows that the function ϕ(s) =

s!
s−1

x=0
(sρ)x−s

x! is strictly increasing in s. This expression is in the denominator of Cs and is multiplied by the positive
coefficient 1 − ρ(1 − α). We therefore deduce that Cs is decreasing in s as well as Ψ , Pb and E(W ), because they are all
proportional to Cs. Since Ψ and Pb are decreasing in s, 1 − Pb − Ψ is increasing in s and E(W1) is decreasing in s.

Harel [29] also shows that 1
1+ϕ(s) is strictly convex in s (convexity of the Erlang loss formula) and that 1

1+s!
s−1

x=0
(sρ)x−s

x! (1−ρ)

=
1

1+ϕ(s)(1−ρ) is strictly convex in s (convexity of the Erlang delay formula). Since Cs =
1

1+ϕ(s)(1−ρ(1−α)) , one may write

∂2Cs

∂s2
= (1 − ρ(1 − α))

2(1 − ρ(1 − α))(ϕ′(s))2 − ϕ′′(s)(1 + ϕ(s))

(1 + ϕ(s)(1 − ρ(1 − α)))3
.

From [29], we have 2(1 − ρ(1 − α))(ϕ′(s))2 − ϕ′′(s)(1 + ϕ(s)) > 0 for α = 0 and α = 1. Since ϕ(s) does not depend on α
and 1 − ρ(1 − α) is strictly increasing in α, we obtain ∂2Cs

∂s2
> 0. Therefore, Cs is strictly convex in s.

We next deduce that Ψ , Pb and E(W ) are convex in s. One may see that E(W1) is proportional to Ds, with Ds =
Cs

1−(α+q)Cs
.

We have

Ds+2 + Ds − 2Ds+1 =
Cs+2 + Cs − 2Cs+1 + (α + q) (CsCs+1 + Cs+1Cs+2 − 2CsCs+2)

(1 − (α + q)Cs)(1 − (α + q)Cs+1)(1 − (α + q)Cs+2)

=
(Cs+2 + Cs − 2Cs+1)(1 − (α + q)Cs+1)+ 2(α + q)(Cs − Cs+1)(Cs+1 − Cs+2)

(1 − (α + q)Cs)(1 − (α + q)Cs+1)(1 − (α + q)Cs+2)
.

Since Cs is strictly convex, Cs+2 + Cs − 2Cs+1 > 0. Since Cs is strictly decreasing, (Cs − Cs+1)(Cs+1 − Cs+2) > 0. Thus, Ds is
strictly convex in s and E(W1) is also strictly convex in s. This finishes the proof of the proposition. �

Appendix F. Proof of Proposition 5

Recall that in the non-idling case, we have

Ψ =

q


a(1−α)
s

k
as
s! p0,0

1 −
a(1−q−α)

s − q a
s


a(1−α)

s

k .
Since for stability reason a(1−α)

s ≤ 0, we obtain

∂Ψ

∂k
= q

as

s!
p0,0


a(1−α)

s

k
ln


a(1−α)
s

 
1 −

a(1−q−α)
s



1 −

a(1−q−α)
s − q a

s


a(1−α)

s

k2 ≤ 0.

Thus, Ψ is decreasing in k. We now rewrite E(W1) as

E(W1) =


1 −

(1−q−α)a
s


λq

f (k)g(k),
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where

f (k) =
Ψ

a(1−α)
s

k
(1 − Ψ − Pb)

,

and

g(k) =

a(1 − α)

s

 1 − k


a(1−α)
s

k−1
+ (k − 1)


a(1−α)

s

k

1 −

a(1−α)
s

2 +


a(1 − α)

s

k (1−q−α)a
s + k


1 −

(1−q−α)a
s



1 −

(1−q−α)a
s

2
 .

First we show that f (k) is increasing in k. We have

f ′(k) =


a(1 − α)

s

k −
∂Ψ
∂k Pb − Ψ ln


a(1−α)

s


(1 − Ψ − Pb)

a(1−α)
s

k
(1 − Ψ − Pb)

2 ≥ 0,

because Ψ is decreasing in k and a(1−α)
s < 1 for stability reason. We rewrite g(k) as

g(k) =

a(1−α)
s


1 −

(1−q−α)a
s

2
−

qa
s


1 −

a(1−α)
s

k 
k

1 −

a(1−α)
s

 
1 −

(1−q−α)a
s


+ 1 −

a(1−α)
s

(1−q−α)a
s



1 −

a(1−α)
s

2 
1 −

(1−q−α)a
s

2 .

Only the numerator, say n(k), of this expression depends on k. We have

n′(k) = −
qa
s

ln

a(1 − α)

s


1 −

a(1 − α)

s

k 
(k + 1)


1 −

a(1 − α)

s


×


1 −

(1 − q − α)a
s


+ 1 −

a(1 − α)

s
(1 − q − α)a

s


≥ 0,

since a(1−α)
s < 1. We finally deduce that E(W1) is increasing in k, which completes the proof of the proposition. �

Appendix G. Proof of Proposition 6

When an idle agent considers the service of the first outbound call in line, There are two possibilities. The first possibility
(with probability r1 + r2 > 0) is that the customer is available and will be served within an exponential duration with
parameter µ1 or µ2 with probability r1 or r2, respectively. The second possibility (with probability 1 − r1 − r2) is that the
customer is not available and the agent will be occupied a random duration exponentially distributed with parameter µ3.
This customer will be then called back again latter according to the same process and independently of the fact that she has
been already called back. Let us denote by Ui, a Bernoulli random variable, which takes the value 1 with probability r1 + r2
and 0 otherwise for i ≥ 1; by Vi, a Bernoulli random variable, which takes the value 1 with probability r1

r1+r2
and 0 otherwise

for i ≥ 1; and by Ti,j an exponential random variable with parameterµj, for i ≥ 1 and j = 1, 2, 3. The time duration, denoted
by the random variable T , which is spent by the system capacity to serve an outbound call, can be written as follows.

T = U1(V1T1,1 + (1 − V1)T1,2)+ (1 − U1)(T1,3 + U2(V2T2,1 + (1 − V2)T2,2)+ (1 − U2)(T2,3 + · · ·

=

∞
i=1

i−1
k=1

(1 − Uk)UiViTi,1 +

∞
i=1

i−1
k=1

(1 − Uk)Ui(1 − Vi)Ti,2 +

∞
i=1

i
k=1

(1 − Uk)Ti,3.

We next derive the expected value of T . Since all the considered random variables are independent, we have

E(T ) =

∞
i=1

i−1
k=1

E(1 − Uk)E(Ui)E(Vi)E(Ti,1)+

∞
i=1

i−1
k=1

E(1 − Uk)E(Ui)E(1 − Vi)E(Ti,2)+

∞
i=1

i
k=1

E(1 − Uk)E(Ti,3)

=
r1

r1 + r2

1
µ1

+
r2

r1 + r2

1
µ2

+
1 − r1 − r2
r1 + r2

1
µ3
.

We now derive the variance of T , denoted by Var(T ). Again, from the independence of the random variables, we obtain

Var(T ) =

∞
i=1

Var


i−1
k=1

(1 − Uk)UiViTi,1


+

∞
i=1

Var


i−1
k=1

(1 − Uk)Ui(1 − Vi)Ti,2


+

∞
i=1

Var


i

k=1

(1 − Uk)Ti,3


.
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Let us define the sequence Sn by Sn = Var
n

k=1(1 − Uk)

, for n ≥ 0, with S0 = 0. We have

Sn = Sn−1(Var(1 − Un)+ E2(1 − Un))+ Var(1 − Un)E2


n−1
k=1

(1 − Uk)


,

for n ≥ 1. Since Var(1−Un) = (r1+r2)(1−r1−r2), E2(1−Un) = (1−r1−r2)2 and E2
n−1

k=1(1 − Uk)


= (1−r1−r2)2n−2,
we obtain

Sn = (1 − r1 − r2)Sn−1 + (r1 + r2)(1 − r1 − r2)2n−1, (64)

for n ≥ 1. Using Eq. (64), it is easy to prove by induction that Sn = (1 − r1 − r2)n(1 − (1 − r1 − r2)n), for n ≥ 0. We next
compute Var(UnVnTn,1), for n ≥ 1. We may write

Var(UnVnTn,1) = Var(UnVn)Var(Tn,1)+ Var(UnVn)E2(Tn,1)+ E2(UnVn)Var(Tn,1)

=
1
µ2

1


2Var(UnVn)+ E2(UnVn)


=

1
µ2

1


2Var(Un)Var(Vn)+ 2E2(Un)Var(Vn)+ 2Var(Un)E2(Vn)+ E2(Un)E2(Vn)


=

r1
µ2

1


2(1 − r1 − r2)r2

r1 + r2
+ 2r2 + 2

(1 − r1 − r2)r1
r1 + r2

+ r1


=

r1(2 − r1)
µ2

1
.

Hence
∞
i=1

Var


i−1
k=1

(1 − Uk)UiViTi,1



=

∞
i=1


Si−1(Var(UiViTi,1)+ E2(UiViTi,1))+ E2


i−1
k=1

(1 − Uk)


Var(UiViTi,1)



=

∞
i=1


(1 − r1 − r2)i−1(1 − (1 − r1 − r2)i−1)


r1(2 − r1)

µ2
1

+
r21
µ2

1


+ (1 − r1 − r2)2i−2 r1(2 − r1)

µ2
1


=

2r1
µ2

1

∞
i=1

(1 − r1 − r2)i−1
−

r21
µ2

1

∞
i=1

(1 − r1 − r2)2(i−1)

=
r1(4 − 3r1 − 2r2)

µ2
1(r1 + r2)(2 − r1 − r2)

.

Using the same approach, we also obtain


∞

i=1 Var(
i−1

k=1(1−Uk)Ui(1−Vi)Ti,2) =
r2(4−3r2−2r1)

µ2
2(r1+r2)(2−r1−r2)

and


∞

i=1 Var(
i

k=1(1−

Uk)Ti,3) =
(1−r1−r2)(4−r1−r2)
µ2
3(r1+r2)(2−r1−r2)

. This finishes the proof of the proposition. �

Appendix H. Supplementary data

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.peva.2015.09.002.
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